Há certos produtos que ocorrem freqüentemente no calculo algébrico e que são chamados produtos notáveis. Vamos apresentar aqueles cujo emprego é mais freqüente.
QUADRADO DA SOMA DE DOIS TERMOS
Observe: (a + b)² = ( a + b) . (a + b)
_______________= a² + ab+ ab + b²
_______________= a² + 2ab + b²
Conclusão:
(primeiro termo)² + 2.(primeiro termo) . (segundo termo) + (segundo termo)²
Exemplos :
1) (5 + x)² = 5² + 2.5.x + x² = 25 + 10x + x²
2) (2x + 3y)² = (2x)² + 2.(2x).(3y) + (3y)² = 4x² + 12xy + 9y²
Exercícios
1) Calcule
a) (3 + x)² = ( R: 9 + 6x +x²)
b) (x + 5)² = ( R: x² + 10x + 25)
c) ( x + y)² = ( R: x² + 2xy +y²)
d) (x + 2)² = ( R: x² + 4x + 4)
e) ( 3x + 2)² = ( R: 9x² + 12x +4)
f) (2x + 1)² = (R: 4x² + 4x + 1)
g) ( 5+ 3x)² = (R: 25 + 30x + 9x²)
h) (2x + y)² = (R: 4x² + 4xy + y²)
i) (r + 4s)² = (R: r² + 8rs + 16s²)
j) ( 10x + y)² = (R: 100x² + 20xy + y²)
l) (3y + 3x)² = (R: 9y² + 18xy + 9x²)
m) (-5 + n)² = (R: 25 -10n + n²)
n) (-3x + 5)² = (R: 9x² - 30x + 25)
o) (a + ab)² = (R: a² + 2a²b + a²b²)
p) (2x + xy)² = (R: 4x² + 4x²y + x²y²)
q) (a² + 1)² = (R: (a²)² + 2a² + 1)
r) (y³ + 3)² = [R: (y³)² + 6y³ + 9]
s) (a² + b²)² = [R: (a²)² + 2a²b² + (b²)²]
t) ( x + 2y³)² = [R: x² + 4xy³ + 4(y³)²]
u) ( x + ½)² = (R: x² +x + 1/4)
v) ( 2x + ½)² = (R: 4x² + 2x + 1/4)
x) ( x/2 +y/2)² = [R: x²/4 + 2xy/4 + y²/4]
QUADRADO DA DIFERENÇA DE DOIS TERMOS
Observe: (a - b)² = ( a - b) . (a - b)
______________= a² - ab- ab + b²
______________= a² - 2ab + b²
Conclusão:
(primeiro termo)² - 2.(primeiro termo) . (segundo termo) + (segundo termo)²
1) ( 3 – X)² = 3² + 2.3.X + X² = 9– 6x + x²
2) (2x -3y)² = (2x)² -2.(2x).(3y) + (3y)² = 4x² - 12xy+ 9y²
Exercícios
2) Calcule
a) ( 5 – x)² = (R: 25 – 10x + x²)
b) (y – 3)² = (R: y² - 6y + 9)
c) (x – y)² = (R: x² - 2xy + y²)
d) ( x – 7)² = (R: x² - 14x + 49)
e) (2x – 5) ² = (R: 4x² - 20 x + 25)
f) (6y – 4)² = (R: 36y² - 48y + 16)
g) (3x – 2y)² = (R: 9x² - 12xy + 4y²)
h) (2x – b)² = (R: 4x² - 4xb + b²)
i) (5x² - 1)² = [R: 25(x²)² - 10x² + 1)
j) (x² - 1)² = (R: x⁴ - 2x² + 1)
l) (9x² - 1)² = (R: 81x⁴- 18x² + 1)
m) (x³ - 2)² = (R: x⁶ - 4x³ + 4)
n) (x – 5y³)² = (R :x² - 10xy³ +25x⁶ )
o) (1 - mx)² = (R: 1 -2mx +m²x²)
p) (3x + 5)² = ( R :9x² + 30 x + 25)
PRODUTO DA SOMA PELA DIFERENÇA DE DOIS TERMOS
conclusão:
(primeiro termo)² - (segundo termo)²
Exemplos :
1) ( x + 5 ) . (x – 5) = x² - 5² = x² - 25
2) (3x + 7y) . (3x – 7y) = (3x)² - (7y)² = 9x² - 49y²
conclusão:
(primeiro termo)² - (segundo termo)²
Exemplos :
1) ( x + 5 ) . (x – 5) = x² - 5² = x² - 25
2) (3x + 7y) . (3x – 7y) = (3x)² - (7y)² = 9x² - 49y²
EXERCÍCIOS
3) Calcule o produto da soma pela diferença de dois termos:
a) (x + y) . ( x - y) = (R : x² - y²)
b) (y – 7 ) . (y + 7) = ( R : y² - 49)
c) (x + 3) . (x – 3) = ( R: x² - 9)
d) (2x + 5 ) . (2x – 5) = ( R: 4x² - 25)
e) (3x – 2 ) . ( 3x + 2) = ( R: 9x² - 4 )
f) (5x + 4 ) . (5x – 4) = ( R: 25x² - 16)
g) (3x + y ) (3x – y) = (R: 9x² - y² )
h) ( 1 – 5x) . (1 + 5x) = ( R: 1 - 25x² )
i) (2x + 3y) . (2x – 3y) = ( R: 4x² - 9y² )
j) (7 – 6x) . ( 7 + 6x) = (R: 49 - 36x²)
l) (1 + 7x²) . ( 1 – 7x²) = (R: 1 - 49x⁴)
m) (3x² - 4 ) ( 3x² + 4) = ( R: 9x² - 16)
n) (3x² - y²) . ( 3x² + y²) = (R: 9x⁴ - y⁴)
o) (x + 1/2 ) . ( x – 1/2 ) = ( R : x² - 1/4)
p)(x – 2/3) . ( x + 2/3) = ( R: x² - 4/6)
q)( x/4 + 2/3) . ( x/4 – 2/3) = (R: x²/16 - 4/9)
4) Desenvolva os seguintes produtos notáveis abaixo:
a) (2a+3)² = (R: 4a² + 12a + 9)
b) (2 + 9x)² = ( R: 4 + 36x + 81x² )
c) (6x - y)² = (R: 36 x² - 12xy + y²)
d) (a - 2b)² = (R: a² - 4ab+ 4b²)
e) (7a +1) (7a - 1) = (R: 49 a² -1)
f) (10a - bc) (10a + bc) = (R:100a² - b²c²)
g) (x² + 2a)² = (R: x⁴ + 4x²a + 4a²)
h) (x - 5) (x + 5) = (R: x² - 25)
i) (9y + 4 ) (9y - 4) = (R:81y² -16)
j) (m - n)² = (R: m² - 2mn + n²)
5) Sabendo que x² + y² = 153 e que xy = 36, calcule o valor de (x+y)².
(R: 235)
6) Qual o valor numérico da expressão (a - 2b)², sabendo-se que a² + 4b² = 30 e ab = 5.
(R: 10)
7) Simplifique as expressões:
8) Desenvolva:
a) (x+y)2–x2-y2
(x+y)2–x2-y2 = x2+2xy+y2–x2-y2 = 2xy
b) (x+2)(x-7)+(x-5)(x+3)
(x+2)(x-7)+(x-5)(x+3) = x2+(2+(-7))x+2.(-7) + x2+(-5+3)x+3.(-5) =
x2-5x-14+ x2-2x-15 = 2x2-7x-29
c) (2x-y)2-4x(x-y)
(2x-y)2-4x(x-y) = (2x)2-2.2x.y+y2-4x2+4xy = 4x2-4xy+y2-4x2+4xy = y2
8) Desenvolva:
a) (3x+y)2
(3x+y)2 = (3x)2+2.3x.y+y2 = 9x2+6xy+y2
b) ((1/2)+x2)2
((1/2)+x2)2 = (1/2)2+2.(1/2).x2+(x2)2 = (1/4) +x2+x4
c) ((2x/3)+4y3)2
((2x/3)+4y3)2 = (2x/3)2-2.(2x/3).4y3+(4y3)2= (4/9)x2-(16/3)xy3+16y6
d) (2x+3y)3
(2x+3y)3 = (2x)3+3.(2x)2.3y+3.2x.(3y)2+(3y)3 = 8x3+36x2y+54xy2+27y3
e) (x4+(1/x2))3
(x4+(1/x2))3 = (x4)3+3.(x4)2.(1/x2)+3.x4.(1/x2)2+(1/x2)3 = x12+3x6+3+(1/x6)
f) ((2x/3)+(4y/5)).((2x/3)-(4y/5)
(2x/3)+(4y/5)).((2x/3)-(4y/5)) = (2x/3)2-(4y/5)2 = (4/9)x2-(16/25)y2
9) Se x - y = 7 e xy = 60, então o valor da expressão x² + y² é:
a) 53
b) 109
c) 169
d) 420
Solução:
Do problema, temos a seguinte equação x - y = 7, a princípio não está muito claro o valor de x² + y², mas vamos traçar uma estratégia para resolução da questão:
Na equação x - y = 7, vamos elevar os dois membros ao quadrado, ficando assim:
(x - y)² = 7², desenvolvendo temos:
x² - 2xy + y² = 49, veja que já apareceram o x² e y², arrumando
x² + y² = 49 + 2xy, mas xy = 60 e daí
x² + y² = 49 + 2.60, resolvendo:
x² + y² = 49 + 120, logo x² + y² = 169.
Utilizamos a estratégia de elevar os dois membros da equação ao quadrado - podemos fazer isto, desde que façamos em ambos os membros - e logo apareceu x² + y².
10)A expressão (x - y)² - (x + y)² é equivalente a:
a) 0
b) 2y²
c) -2y³
d) -4xy
Solução:
Primeiro vamos desenvolver os binômios separadamente:
(x - y)² - (x + y)²
(x-y)² = x² - 2xy + y² e (x + y)² = x² + 2xy + y²
Após desenvolver, voltamos para a expressão e substituímos:
(x - y)² - (x + y)² = x² - 2xy + y² - (x² + 2xy + y²) = x² - 2xy + y² - x² - 2xy - y² =
x² - x² - 2xy - 2xy + y² - y² = -2xy - 2xy = - 4xy
Logo, (x - y)² - (x + y)² = - 4xy
11) (TRT-2011) Indagado sobre o número de processos que havia arquivado certo dia, um Técnico Judiciário, que gostava muito de Matemática, respondeu:
- O número de processos que arquivei é igual a (12,25)^2-(10,25)^2
Chamando X o total de processos que ele arquivou, então é correto afirmar que:
a)38 < X < 42.
b) X > 42.
c) X < 20.
d)20 < X < 30.
e)30 < X < 38
Solução:
Temos que o produto da soma pela diferença de dois termos pode ser vista como:
12) Calcule o produto da soma pela diferença de dois termos:
b) (y – 7 ) . (y + 7) =
c) (x + 3) . (x – 3) =
d) (2x + 5 ) . (2x – 5) =
e) (3x – 2 ) . ( 3x + 2) =
f) (5x + 4 ) . (5x – 4) =
g) (3x + y ) (3x – y) =
h) ( 1 – 5x) . (1 + 5x) =
i) (2x + 3y) . (2x – 3y) =
j) (7 – 6x) . ( 7 + 6x) =
l) (1 + 7x²) . ( 1 – 7x²) =
13) Desenvolva:
a) ( x + y)³ =
b) (x – y)³ =
c) (m + 3)³ =
d) (a – 1 )³ =
e) ( 5 – x)³ =
14) Calcule o valor numérico de
110M , sabendo que M+2=a2b2+b2a2+2−−−−−−−−−−−√ , a=0,998 e b=1 .
b) (x – y)³ =
c) (m + 3)³ =
d) (a – 1 )³ =
e) ( 5 – x)³ =
14) Calcule o valor numérico de
a) 249.500
b)24950
c)2495
d)249,5
e)24,49
b)
c)
d)
e)
15) A expressão (a + b + c)² é igual a
b) a² + b² + c² + 2ab + 2ac + 2bc
c) a² + b² + c² + 2abc
d) a² + b² + c² + 4abc
e) a² + 2ab + b² + 2bc + c²
16) (FEI 95)Simplificando a expressão, (imagem abaixo) obtemos:
b) a² + b²
c) ab
d) a² + ab + b²
e) b - a
17) Seja N o resultado da operação 375²-374². A soma dos algarismos de N é:
a) 18
b) 19
c) 20
d) 21
e) 22
b) 19
c) 20
d) 21
e) 22
18) Efetuando-se (579865)² - (579863)², obtém-se
a) 4
b) 2 319 456
c) 2 319 448
d) 2 086 246
e) 1 159 728
b) 2 319 456
c) 2 319 448
d) 2 086 246
e) 1 159 728
19) O produto (x + 1)(x² - x +1) é igual a:
a) x³-1
b) x³ + 3x² - 3x + 1
c) x³ + 1
d) x³ - 3x² + 3x - 1
e) x² + 2
Gabarito:
16) D
17) C
18) B
19) C
b) x³ + 3x² - 3x + 1
c) x³ + 1
d) x³ - 3x² + 3x - 1
e) x² + 2
Gabarito:
12) a) (R : x² - y²) b) ( R : y² - 49) c) ( R: x² - 9) d) ( R: 4x² - 25) e) ( R: 9x² - 4 )
f) ( R: 25x² - 16) g) (R: 9x² - y² ) h) ( R: 1 - 25x² ) i) ( R: 4x² - 9y² ) j) (R: 49 - 36x²) l) (R: 1 - 49x⁴)
13) a) (R: x³ + 3x²y + 3xy² + y³) b) (R: x³ - 3x²y + 3xy² - y³) c) ( R: m³ + 9m² + 27m +27)
d) (R: a³ - 3a² + 3a -1) e) (R: 125 - 75x + 15x² -x³)
14) B
15) B16) D
17) C
18) B
19) C