quinta-feira, 3 de dezembro de 2015

Explicação e exercícios sobre Análise Combinatória para Ensino Médio

Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática que estuda os métodos de contagem. Esses estudos foram iniciados já no século XVI, pelo matemático italiano Niccollo Fontana (1500-1557), conhecido como Tartaglia. Depois vieram os franceses Pierre de Fermat (1601-1665) e Blaise Pascal (1623-1662).

A análise combinatória é um dos tópicos que a matemática é dividida, responsável pelo estudo de critérios para a representação da quantidade de possibilidades de acontecer um agrupamento sem que seja preciso desenvolvê-los.

Veja um exemplo de um problema de análise combinatória e como montamos os seus agrupamentos.

Dado o conjunto B dos algarismos B = { 1,2,3,4}. Qual a quantidade de números naturais de 3 algarismos que podemos formar utilizando os elementos do grupo B?

Esse é um tipo de problema de análise combinatória, pois teremos que formar agrupamentos, nesse caso formar números de 3 algarismos, ou seja, formar agrupamentos com os elementos do conjunto B tomados de 3 em 3.

Veja como resolveríamos esse problema sem a utilização de critérios ou fórmulas que o estudo da análise combinatória pode nos fornecer.



Esse esquema construído acima representa todos os números naturais de 3 algarismos que podemos formar com os algarismos 1,2,3,4, portanto, concluindo que é possível formar 24 agrupamentos.

Para descobrir essa quantidade de agrupamentos possíveis não é necessário montar todo esse esquema, basta utilizar do estudo da análise combinatória que divide os agrupamentos em Arranjos simples, Combinações simples, Permutações simples e Permutações com elementos repetidos. Cada uma dessas divisões possui uma fórmula e uma maneira diferente de identificação, que iremos estudar nessa seção.




O estudo da análise combinatória é dividido em:

Princípio fundamental da contagem

Fatorial

Arranjos Simples

Permutação Simples

Combinação Simples

Permutação com elementos repetidos.




 Fatorial:
Seja n um número inteiro não negativo. Definimos o fatorial de n (indicado pelo símbolo n! ) como sendo:

n! = n .(n-1) . (n-2) . ... .4.3.2.1 para n ³ 2.

Para n = 0 , teremos : 0! = 1.
Para n = 1 , teremos : 1! = 1
Exemplos:

a) 6! = 6.5.4.3.2.1 = 720
b) 4! = 4.3.2.1 = 24
c) observe que 6! = 6.5.4!
d) 10! = 10.9.8.7.6.5.4.3.2.1
e) 10! = 10.9.8.7.6.5!
f ) 10! = 10.9.8!

 Princípio fundamental da contagem - PFC:
Se determinado acontecimento ocorre em n etapas diferentes, e se a primeira etapa pode ocorrer de k1 maneiras diferentes, a segunda de k2 maneiras diferentes, e assim sucessivamente, então o número total T de maneiras de ocorrer o acontecimento é dado por:
T = k1. k2 . k3 . ... . kn
Exemplo:

O DETRAN decidiu que as placas dos veículos do Brasil serão codificadas usando-se 3 letras do alfabeto e 4 algarismos. Qual o número máximo de veículos que poderá ser licenciado?

Solução:

Usando o raciocínio anterior, imaginemos uma placa genérica do tipo PWR-USTZ.
Como o alfabeto possui 26 letras e nosso sistema numérico possui 10 algarismos (de 0 a 9), podemos concluir que: para a 1ª posição, temos 26 alternativas, e como pode haver repetição, para a 2ª, e 3ª também teremos 26 alternativas. Com relação aos algarismos, concluímos facilmente que temos 10 alternativas para cada um dos 4 lugares. Podemos então afirmar que o número total de veículos que podem ser licenciados será igual a: 26.26.26.10.10.10.10 que resulta em 175.760.000. Observe que se no país existissem 175.760.001 veículos, o sistema de códigos de emplacamento teria que ser modificado, já que não existiriam números suficientes para codificar todos os veículos. Perceberam?


 Permutações simples:
4.1 - Permutações simples de n elementos distintos são os agrupamentos formados com todos os n elementos e que diferem uns dos outros pela ordem de seus elementos.

Exemplo: com os elementos A,B,C são possíveis as seguintes permutações: ABC, ACB, BAC, BCA, CAB e CBA.
4.2 - O número total de permutações simples de n elementos distintos é dado por n!, isto é   
P= n!    onde    n! = n(n-1)(n-2)... .1 .


Exemplos:

a)  P6 = 6! = 6.5.4.3.2.1 = 720
b) Calcule o número de formas distintas de 5 pessoas ocuparem os lugares de um banco retangular de cinco lugares.
P5 = 5! = 5.4.3.2.1 = 120

4.3 - Denomina-se ANAGRAMA o agrupamento formado pelas letras de uma palavra, que podem ter ou não significado na linguagem comum.

Exemplo:

Os possíveis anagramas da palavra REI são:
REI, RIE, ERI, EIR, IRE e IER.

Permutações com elementos repetidos:
Se entre os n elementos de um conjunto, existem a elementos repetidos, belementos repetidos, c elementos repetidos e assim sucessivamente , o número total de permutações que podemos formar é dado por:
Exemplo:
Determine o número de anagramas da palavra MATEMÁTICA.(não considere o acento)

Solução:
Temos 10 elementos, com repetição. Observe que a letra M está repetida duas vezes, a letra A três , a letra T, duas vezes. Na fórmula anterior, teremos: n=10, a=2, b=3 e c=2. Sendo k o número procurado, podemos escrever:
k= 10! / (2!.3!.2!) = 151200
Resposta: 151200 anagramas.

 Arranjos simples:
Dado um conjunto com n elementos , chama-se arranjo simples de taxa k , a todo agrupamento de k elementos distintos dispostos numa certa ordem. Dois arranjos diferem entre si, pela ordem de colocação dos elementos. Assim, no conjunto E = {a,b,c}, teremos:
a) arranjos de taxa 2: ab, ac, bc, ba, ca, cb.
b) arranjos de taxa 3: abc, acb, bac, bca, cab, cba.
6.2 - Representando o número total de arranjos de n elementos tomados k a k(taxa k) por An,k , teremos a seguinte fórmula:
Obs : é fácil perceber que An,n = n! = Pn . (Verifique)
Exemplo:

Um cofre possui um disco marcado com os dígitos 0,1,2,...,9. O segredo do cofre é marcado por uma sequência de 3 dígitos distintos. Se uma pessoa tentar abrir o cofre, quantas tentativas deverá fazer(no máximo) para conseguir abri-lo?

Solução:

As sequências serão do tipo xyz. Para a primeira posição teremos 10 alternativas, para a segunda, 9 e para a terceira, 8. Podemos aplicar a fórmula de arranjos, mas pelo princípio fundamental de contagem, chegaremos ao mesmo resultado:
10.9.8 = 720.
Observe que 720 = A10,3

 Combinações simples:
Denominamos combinações simples de n elementos distintos tomados k a k(taxa k) aos subconjuntos formados por k elementos distintos escolhidos entre os nelementos dados. Observe que duas combinações são diferentes quando possuem elementos distintos, não importando a ordem em que os elementos são colocados.

Exemplo:

No conjunto E= {a,b.c,d} podemos considerar:
a) combinações de taxa 2: ab, ac, ad,bc,bd, cd.
b) combinações de taxa 3: abc, abd,acd,bcd.
c) combinações de taxa 4: abcd.
 Representando por Cn,k o número total de combinações de n elementos tomados k a  (taxa k) , temos a seguinte fórmula:

Nota: o número acima é também conhecido como Número binomial e indicado por:

Exemplo:
Uma prova consta de 15 questões das quais o aluno deve resolver 10. De quantas formas ele poderá escolher as 10 questões?

Solução:

Observe que a ordem das questões não muda o teste. Logo, podemos concluir que trata-se de um problema de combinação de 15 elementos com taxa 10.

Aplicando simplesmente a fórmula chegaremos a:
C15,10 = 15! / [(15-10)! . 10!] = 15! / (5! . 10!) = 15.14.13.12.11.10! / 5.4.3.2.1.10! = 3003
 

Agora que você viu o resumo da teoria, tente resolver os 3 problemas seguintes:
01 - Um coquetel é preparado com duas ou mais bebidas distintas. Se existem 7 bebidas distintas, quantos coquetéis diferentes podem ser preparados?
Resp: 120
02 -  Sobre uma circunferência são marcados 9 pontos distintos. Quantos triângulos podem ser construídos com vértices nos 9 pontos marcados?
Resp: 84
03 - Uma família com 5 pessoas possui um automóvel de 5 lugares. Sabendo que somente 2 pessoas sabem dirigir, de quantos modos poderão se acomodar para uma viagem?
Resp: 48
Exercício resolvido:

Um salão tem 6 portas. De quantos modos distintos esse salão pode estar aberto?


Solução:

Para a primeira porta temos duas opções: aberta ou fechada
Para a segunda porta temos também, duas opções, e assim sucessivamente.
Para as seis portas, teremos então, pelo Princípio Fundamental da Contagem - PFC:
N = 2.2.2.2.2.2 = 64
Lembrando que uma dessas opções corresponde a todas as duas portas fechadas, teremos então que o número procurado é igual a 64  - 1 = 63.

Resposta: o salão pode estar aberto de 63 modos possíveis.

Símbolos para fluxograma



Fluxograma é um tipo de diagrama, e pode ser entendido como uma representação esquemática de um processo, muitas vezes feito através de gráficos que ilustram de forma descomplicada a transição de informações entre os elementos que o compõem.




Circunferência trigonométrica



Explicação e exercícios sobre Números complexos


Quantas vezes, ao calcularmos o valor de Delta (b2- 4ac) na resolução 
da equação do 2 grau, nos deparamos com um valor negativo (Delta < 0). 
Nesse caso, sempre dizemos ser impossível a raiz no universo considerado
 (normalmente no conjunto dos reais- R).A partir daí, vários matemáticos
 estudaram este problema, sendo Gauss e Argand os que realmente 
conseguiram expor uma interpretação geométrica num outro conjunto 
de números, chamado de números complexos, que representamos por C.

Resultado de imagem para numeros complexos


Números Complexos
Chama-se conjunto dos números complexos, e representa-se por C,
 o conjunto de pares ordenados, ou seja:
z = (x,y) onde x pertence a R e y pertence a R.
Então, por definição, se z = (x,y) = (x,0) + (y,0)(0,1) onde i=(0,1), 
podemos escrever que:z=(x,y)=x+yi

Exemplos:
(5,3)=5+3i
(2,1)=2+i
(-1,3)=-1+3i ...Dessa forma, todo o números complexoz=(x,y) pode ser escrito
na forma z=x+yi, conhecido como forma algébrica, onde temos:
x=Re(z, parte real de z e y=Im(z), parte imaginária de z

Igualdade entre números complexos
Doisnúmeros complexos são iguais se, e somente se, apresentam
simultaneamente iguais a parte real e a parte imaginária. Assim, 
se z1=a+bi e z2=c+di, temos que: z1=z2<==> a=c e b=d

Adição de números complexos 
Para somarmos dois números complexos basta somarmos, 
separadamente, as partes reais e imaginárias desses números.
 Assim, se z=a+bi e z2=c+di, temos que: z1+z2=(a+c) + (b+d)

Subtração de números complexos
Para subtrairmos dois números complexos basta subtrairmos,
 separadamente, as partes reais e imaginárias desses números.
Assim, se z=a+bi e z2=c+di, temos que: z1-z2=(a-c) + (b-d)

Potências de i
Se, por definição, temos que i = - (-1)1/2, então:
i0 = 1
i1 = i
i2 = -1
i3 = i2.i = -1.i = -i
i4 = i2.i2=-1.-1=1
i5 = i4. 1=1.i= i
i6 = i5. i =i.i=i2=-1
i7 = i6. i =(-1).i=-i ......Observamos que no desenvolvimento de in (n pertencente a N,
com n variando, os valores repetem-se de 4 em 4 unidades.
Desta forma, para calcularmos in basta calcularmos ir onde é o
resto da divisão de n por 4.
Exemplo:
i63 => 63 / 4 dá resto 3, logo i63=i3=-i

Multiplicação de números complexos
Para multiplicarmos dois números complexos basta efetuarmos
a multiplicação dois dois binômios, observando os valores das potência
de i. Assim, se z1=a+bi e z2=c+di, temos que:
z1.z2 = a.c + adi + bci + bdi2
z1.z2= a.c + bdi2 = adi + bci
z1.z2= (ac - bd) + (ad + bc)i
Observar que : i2= -1

Conjugado de um número complexo
Dado z=a+bi, define-se como conjugado de z (representa-se por z-
=> z-= a-biExemplo:
z=3 - 5i ==> z- = 3 + 5i
z = 7i ==> z- = - 7i
z = 3 ==> z- = 3

Divisão de números complexos
Para dividirmos dois números complexos basta multiplicarmos
 o numerador e o denominador pelo conjugado do denominador.
Assim, se z1= a + bi e z2= c + di, temos que:
z1 / z2 = [z1.z2-] / [z2z2-] = [ (a+bi)(c-di) ] / [ (c+di)(c-di) ]

Módulo de um número complexo
Dado z = a+bi, chama-se módulo de z ==> | z | = (a2+b2)1/2, conhecido como ro

Interpretação geométrica
Como dissemos, no início, a interpretaçãogeométrica dos números
 complexos é que deu o impulso para o seu estudo.Assim, representamos
 o complexo z = a+bi da seguinte maneira
Forma polar dos números complexos
Da interpretação geométrica, temos que:

que é conhecida como forma polar ou trigonométrica de um número complexo.Operações na forma polar
Sejam z1=ro1(cos t11)e z2=ro1(cos t1+i sent1). Então, temos que:
a)Multiplicação

Divisão

Potenciação

Radiciação

para n = 0, 1, 2, 3, ..., n-1

Exercícios Resolvidos


1 - Sejam os complexos z1=(2x+1) + yi e z2=-y + 2i
Determine x e y de modo que z1 + z2 = 0
Temos que:
z1 + z2 = (2x + 1 -y) + (y +2) = 0
logo, é preciso que:
2x+1 - y =0 e y+2 = 0
Resolvendo, temos que y = -2 e x = -3/2


2 - Determine x, de modo que z = (x+2i)(1+i) seja imaginário puro
Efetuando a multiplicação, temos que:
z = x + (x+2)i + 2i2
z= (x-2) + (x+2)i
Para z ser imaginário puro é necessário que (x-2)=0, logo x=2


3 - Qual é o conjugado de z = (2+i) / (7-3i)?
Efetuando a divisão, temos que:
z = (2+i) / (7-3i) . (7+3i) / (7+3i) = (11 + 3i) / 58
O conjugado de Z seria, então z- = 11/58 - 13i/58


4 - Os módulos de z1 = x + 201/2i e z2= (x-2) + 6i são iguais, qual o valor de x?
Então, |z1= (x2 + 20)1/2 = |z2 = [(x-2)2 + 36}1/2
Em decorrência,
x2 + 20 = x2 - 4x + 4 + 36
20 = -4x + 40
4x = 20, logo x=5


5 - Escreva na forma trigonométrica o complexo z = (1+i) / i
Efetuando-se a divisão, temos:
z = [(1+i). -i] / -i2 = (-i -i2) = 1 - i
Para a forma trigonométrica, temos que:
r = (1 + 1)1/2 = 21/2
sen t = -1/21/2 = - 21/2 / 2
cos t = 1 / 21/2 = 21/2 / 2
Pelos valores do seno e cosseno, verificamos que t = 315
Lembrando que a forma trigonométrica é dada por:
z = r(cos t + i sen t), temos que:
z = 21/2 ( cos 315 + i sen 315 )


Lista de exercícios

1. (UFU-MG) Sejam os complexos z = 2x – 3i  e  t = 2 + yi,
 onde x  e  y são números reais. Se z = t, então o produto x.y é
     A) 6       B) 4       C) 3       D) –3       E) –6
2. (PUC-MG) Qualo é o quociente de (8 + i)/(2 - i) é igual a
     A) 1 + 2i       B) 2 + i       C) 2 + 2i       D) 2 + 3i       E) 3 + 2i
3. (UFV-MG) Dadas as alternativas abaixo
I.  i2 = 1        II. (i + 1)2 = 2i         III. ½4 + 3i½ = 5       IV. (1 + 2i).(1 – 2i) = 5 
pode-se dizer que
A) todas as alternativas acima estão corretas
B) todas as alternativas acima estão erradas
C) as alternativas I e III estão erradas
D) as alternativas II, III e IV estão corretas
E) as alternativas I e III estão corretas
4. (MACK-SP) Se I é um número complexo e Ī o seu conjugado, 
então, o número de soluções da equação Ī = I2 é:
A) 0       B) 1       C) 2       D) 3       E) 4
5. (ITA-SP) Os complexos u e I, de módulo igual a 1, são 
representados no plano de Argand-Gauss por dois pontos
 simétricos em relação ao eixo real. Vale então a relação
A) u. Ī = 1         B) u. I = 1       C) u + Ī = 0       D) u. I = 0       E) n.r.a
6. (CESGRANRIO-RJ) O módulo do complexo z, tal que z2 = i, é
A) 0       B) (Ö2)/2       C) 1       D) Ö2       E) 2
7. (UFPA-PA) Qual o valor de m, real, para que o produto (2 + mi).(3 + i) 
seja um imaginário puro?
A) 5       B) 6       C) 7       D) 8       E) 10
8. (MACK-SP) O conjugado de (2 - i)/i vale
A) 1 – 2i       B) 1 + 2i       C) 1 + 3i       D) –1 + 2i       E) 2 - i
9. Se n é um inteiro, então o conjunto solução em Z, da equação in + i-n = 0, 
onde i = Ö-1, é:
A)
{n Є Z/ n é ímpar}
B)
{n Є Z/ n é par}
C)
{n Є Z/ n > 0}
D)
{n Є Z/ n < 0}
E)
Z
10. (UFPA-PA) Qual o valor de m, real, para que o produto (2 + mi).(3 + i) 
seja um imaginário puro?
A)  5       B)  6       C) 7       D) 8      E) 10
11. Calcule o número complexo i126 + i-126 + i31 - i180
12. Sendo z = 5i + 3i2 - 2i3 + 4i27 e w = 2i12 - 3i15 , calcule Im(z).w + Im(w).z .
13. (UCMG) O número complexo 2z, tal que 5I + Ī = 12 + 6i é:  
14. (UCSal) Para que o produto (a + i).(3 - 2i) seja real, a deve ser:
15. (UFBA) Sendo a = -4 + 3i , b = 5 - 6i  e  c = 4 - 3i , o valor de ac + b é:
16. (Mackenzie-SP) O valor da expressão y = i + i2 + i3 + ... + i1001 é:
17. Determine o número natural n tal que (2i)n + (1 + i)2n + 16i = 0.
18. Calcule [(1 + i)80 + (1 + i)82] : i96.240
19. Se os números complexos z e w são tais que z = 2 - 5i e w = a + bi, 
sabendo-se que z + w é um número real e  z.w.é um imaginário puro , 
pede-se calcular o valor de b2 - 2a.
20. Se o número complexo z = 1 - i é uma das raízes da equação x10 + a = 0,
 então calcule o valor de a.
21- Determine o número complexo I tal que iI  + 2.Ī + 1 - i = 0.
22. (UFMG) Se z = (cos q + i senq)  é um número complexo na forma
 trigonométrica, mostra-se que zn = rn(cos q + i sen nq) para todo n Î IN. 
Essa fórmula é conhecida como fórmula de De Moivre.
A) Demonstre a fórmula de De Moivre para n = 2, ou seja, demonstre
 que z2 = r2(cos 2q + i sen 2q).
B) Determine todos os valores de n, n Є IN, para os quais  (Ö3 + i)n 
 seja imaginário puro.
23. (UFMG)
A) Dado o número complexo na forma trigonométrica I = 2[cos (3p/8) + i sen(3p/8)],
 escreva os números complexos Ī, I2 e na forma trigonométrica.
B) No plano complexo da figura abaixo, marque e identifique os números I, ĪI2 
e no item acima.
Nessa figura, os ângulos formados por dois raios consecutivos quaisquer 
têm a mesma medida.
24. (UFMG) Por três pontos não-colineares do plano complexo, z1, z2 e z3
passa uma única circunferência.
Sabe-se que um ponto z está sobre essa circunferência se, e somente se, 
for um número real.
Seja C a única circunferência que passa pelos pontos z1 = 1, z2 = -3i e z3 = -7 + 4i
  do plano complexo.
Assim sendo, determine todos os pontos do plano complexo cuja parte real é igual  
a –1  e que estão sobre a circunferência C.
25. (UFMG) 2002 - Observe esta figura:
    
Nessa figura, OP = 2 e OQ = 4.
Sejam z e w, respectivamente, os números complexos representados 
geometricamente pelos pontos  P e Q.  
Considerando esses dados, escreva o número complexo z11 / i.w5 na forma
 a + bi, em que a e b são números reais.
26. (UEFS) O valor da expressão E = x-1 + x2, para x = 1 - i, é:
a) -3i      b) 1 – i      c) 5/2 + (5/2)i      d) 5/2 - (3/2)i       e) ½ - (3/2)i
27. (UEFS) Simplificando-se a expressão E = i7 + i5 + ( i3 + 2i4 )2 , obtêm-se:
a) -1 + 2i      b) 1 + 2i      c) 1 - 2i      d) 3 - 4i      e) 3 + 4i
28. (UEFS) Se m - 1 + ni = (3 + i).(1 + 3i), então m e n são respectivamente:
a) 1 e 10      b) 5 e 10       c) 7 e 9      d) 5 e 9      e) 0 e -9
29. (UEFS) A soma de um número complexo z com o triplo do seu conjugado
 é igual a -8 - 6i. O módulo de z é:
a) Ö13      b) Ö7       c) 13      d) 7      e) 5
30. (FESP/UPE) Seja  z = 1 + i, onde i é a unidade imaginária. Podemos afirmar 
que z8 é igual a:
a) 16      b) 161      c) 32      d) 32i      e) 32 + 16i
31. (UCSal) Sabendo que (1 + i)2 = 2i, então o valor da expressão y = (1 + i)48 - (1 + i)49 é:
a) 1 + i       b) -1 + i       c) 224 . i       d) 248 . i       e) -224 . i


1) Sendo z = (m^2 - 5m + 6) + (m^2 - 1) i, determine m de modo 

que z seja um imaginário puro.

Solução: Para que o complexo z seja um imaginário puro, sua parte real deve
 ser nula ou seja, devemos ter
m2 - 5m + 6 = 0, que resolvida encontramos m = 2 ou m = 3.




2) Determine a parte real do número complexo z = (1 + i)^12.

SoluçãoObserve que (1 + i)12 = [(1 + i)2]6 . Nestas condições, vamos
 desenvolver o produto notável
(1 + i)2 = 12 + 2.i + i2 = 1 + 2i -1 = 2i \ (1 + i)2 = 2i (isto é uma propriedade
 importante, que vale a pena ser memorizada).
Substituindo na expressão dada, vem:
(1 + i)12 = [(1 + i)2]6 = (2i)6 = 26.i6 = 64.(i2)3 = 64.(-1)3 = - 64.
Portanto, o número complexo dado fica z = - 64 = - 64 + 0i e portanto sua 
parte real é igual a -64.


3) Determine a parte imaginária do número complexo z = (1 - i)^200.

Solução: Podemos escrever o complexo z como: z = [(1 - i)2]100 . Desenvolvendo
 o produto notável
(1 - i)2 = 12 - 2.i + i2 = 1 - 2i -1 = - 2i \ (1 - i)2 = - 2i (isto é uma propriedade importante, 
que merece ser memorizada).
Substituindo na expressão dada, vem:
z = (- 2i)100 = (- 2)100. i100 = 2100 . i100 = 2100 . ( i)50 = 2100. (- 1)50 = 2100 . 1 = 2100.
Logo, o número complexo z é igual a 2100 e portanto um número real. Daí concluímos 
que a sua parte imaginária é zero.




lista de exercícios

1 - Calcule o número complexo i126 + i-126 + i31 - i180
2 - Sendo z = 5i + 3i2 - 2i3 + 4i27 e w = 2i12 - 3i15, calcule Im(z).w + Im(w).z .
3 - UCMG - O número complexo 2.O, tal que 5z + Ō = 12 + 6i é:
4 - UCSal - Para que o produto (a + i). (3 - 2i) seja real, a deve ser:
5 - UFBA - Sendo a = -4 + 3i , b = 5 - 6i e c = 4 - 3i , o valor de ac+b é:
6 - Mackenzie-SP - O valor da expressão y = i + i2 + i3 + ... + i1001 é:
7 - Determine o número natural n tal que (2i)n + (1 + i)2n + 16i = 0.   Resp: 3
8 - Calcule [(1 + i)80 + (1 + i)82] : i96.240.   Resp: 1 + 2i
9 - Se os números complexos z e w são tais que z = 2 - 5i e w = a + bi , sabendo-se 
que z + w é um número real e z.w.é um imaginário puro , pede-se calcular o valor de b2 - 2a.   Resp: 50
10 - Se o número complexo z = 1 - i é uma das raízes da equação x10 + a = 0 , então calcule o valor de a.  Resp: 32i
11 - Determine o número complexo z tal que i.O + 2.Ō + 1 - i = 0.
12 - UEFS-92.1 - O valor da expressão E = x-1 + x2, para x = 1 - i, é:
a) -3i       b) 1 - i       c) 5/2 + (5/2)i       d) 5/2 - (3/2)i       e) 1/2 - (3/2)i
13 - UEFS-93.2 - Simplificando-se a expressão E = i7 + i5 + ( i3 + 2i4 )2 , obtêm-se:
a) -1 + 2i       b) 1 + 2i       c) 1 - 2i       d) 3 - 4i       e) 3 + 4i
14 - UEFS-93.2 - Se m - 1 + ni = (3 + i).(1 + 3i), então m e n são respectivamente:
a) 1 e 10       b) 5 e 10       c) 7 e 9       d) 5 e 9       e) 0 e -9
15 - UEFS-94.1 - A soma de um numero complexo z com o triplo do seu conjugado 
é igual a -8 - 6i. O módulo de z é:
a) Ö13      b) 7       c) 13       d) 7       e) 5
16 - FESP/UPE - Seja z = 1 + i , onde i é a unidade imaginária. Podemos afirmar
 que z8 é igual a:
a) 16       b) 161       c) 32       d) 32i       e) 32 + 16i

17 - UCSal - Sabendo que (1 + i)22 = 2i, então o valor da expressão
y = (1 + i)48 - (1 + i)49 é:
a) 1 + i       b) -1 + i       c) 224 . i       d) 248 . i       e) -224 . i

Destaque!!!!!!!!!!!

Aula criativa de matemática sobre a conversão do dólar

Um emprego em um navio de cruzeiro pode ser uma grande chance de conhecer lugares novos e ganhar um bom salário. Quanto melhor for seu ingl...