quinta-feira, 3 de dezembro de 2015

Exercícios resolvidos Representação dos números inteiros na reta.

REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA

Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa unidade de medida, assinalemos os pontos que correspondem aos números positivos e à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem aos números negativos.



_I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6

Exercícios

1) Escreva os números inteiros:

a) compreendidos entre 1 e 7 (R: 2,3,4,5,6)
b) compreendidos entre -3 e 3 (R: -2,-1,0,1,2)
c) compreendidos entre -4 e 2 ( R: -3, -2, -1, 0, 1)
d) compreendidos entre -2 e 4 (R: -1, 0, 1, 2, 3 )
e) compreendidos entre -5 e -1 ( R: -4, -3, -2)
f) compreendidos entre -6 e 0 (R: -5, -4, -3, -2, -1)

2) Responda:

a) Qual é o sucessor de +8? (R: +9)
b) Qual é o sucessor de -6? (R: -5)
c) Qual é o sucessor de 0 ? (R: +1)
d) Qual é o antecessor de +8? (R: +7)
e) Qual é o antecessor de -6? ( R: -7)
f) Qual é o antecessor de 0 ? ( R: -1)

3) Escreva em Z o antecessor e o sucessor dos números:

a) +4 (R: +3 e +5)
b) -4 (R: -5 e - 3)
c) 54 (R: 53 e 55 )
d) -68 (R: -69 e -67)
e) -799 ( R: -800 e -798)
f) +1000 (R: +999 e + 1001)


4)Observe a temperatura de algumas cidades brasileiras em um determinado dia. Use números inteiros, positivos ou negativos, para escrever a temperatura registrada nas cidades.
a) Curitiba:
b) Salvador:
c) Gramado:
d) São Paulo:
e) Rio de Janeiro:
f) São Joaquim:
5) O esquema a seguir indica o quadro de controle do elevador de uma loja. Sabendo que a loja tem andares acima e abaixo do térreo, use números inteiros positivos e negativos para indicar cada um dos andares.


Exercícios iniciais números inteiros


Reunindo os números negativos, o zero e os números positivos, formamos o conjunto dos números inteiros relativos, que será representado por Z.

Z = { .....-3, -2, -1, 0, +1, +2, +3,......}

Importante: os números inteiros positivos podem ser indicados sem o sinal de +.

exemplo

a) +7 = 7
b) +2 = 2
c) +13 = 13
d) +45 = 45

Sendo que o zero não é positivo nem negativo

EXERCÍCIOS

1) Observe os números e diga:

-15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72

a) Quais os números inteiros negativos?
R: -15,-1,-93,-8,-72

b) Quais são os números inteiros positivos?
R: +6,+54,+12,+23,+72

2) Qual o número inteiro que não é nem positivo nem negativo?
R: É o zero

3) Escreva a leitura dos seguintes números inteiros:

a) -8 =(R: oito negativo)
b)+6 = (R: seis positivo)
c) -10 = (R: dez negativo)
d) +12 = (R: doze positivo)
e) +75 = (R: setenta e cinco positivo)
f) -100 = (R: cem negativo)

4) Quais das seguintes sentenças são verdadeiras?

a) +4 = 4 = ( V)
b) -6 = 6 = ( F)
c) -8 = 8 = ( F)
d) 54 = +54 = ( V)
e) 93 = -93 = ( F )


5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte situação com números inteiros relativos:

a) 5° acima de zero = (R: +5)
b) 3° abaixo de zero = (R: -3)
c) 9°C abaixo de zero= (R: -9)
d) 15° acima de zero = ( +15)


6) Imagine que nesse mesmo dia a temperatura em Nova York, nos Estados Unidos, estava 3 graus abaixo da temperatura registrada em Gramado. Isso significa que a temperatura registrada em nova York era de:

7) Usando números inteiros positivos e negativos, indique simbolicamente:
Ex: um saldo de 13 gols a favor: +13gols
a) um saldo de 13 gols sofridos:b) uma profundidade de 100 metros:c) um lucro de R$700,00:d) 28km ao sul de uma cidade:e) um crédito de 800,00: +800f) uma temperatura de 23ºC abaixo de zero: -23g) 700m acima do nível do mar: +700h) um saldo de 7 gols contra: -7
8) Nas seguintes afirmações, diga se é Verdadeiro ou Falso? 
a) +3 é um número inteiro 
b) -2,5 é um número inteiro  
c) 4 é um número natural  
d) 0 e 9 são números naturais 
e) -9 e +9 são números naturais  
f) -18 e 15 são números naturais 
g) -18 e 15 são números inteiros 
h) 0 faz parte dos conjuntos naturais e inteiros 
9) Uma equipe de basquete realizou três jogos. Nesses jogos, a equipe marcou 251 pontos e sofreu 240 pontos.
a) qual o saldo de pontos dessa equipe é positivo ou negativo?b) usando números inteiros positivos ou negativos, escreva esse saldo:
10)  Um elevador se encontra do andar térreo de um edifício. Usando números inteiros positivos ou negativos e considerando o térreo como origem zero, indique o andar onde o elevador se encontra quando:
Ex: sobre 8 andares: +8
a) sobe 5 andares:b) desce 2 andares:
c) sobe 9 andares e desce 6 andares:
d) desce 4 andares e sobe 2 andares:
11) Represente as afirmações abaixo usando números positivos ou negativos.
a) o mergulhador estava a 15m de profundidade:b) Promoção: Mega liquidação com 40% de desconto:c) O freezer está com temperatura de 5ºC abaixo de zero:d) Carlos tem um saldo bancário positivo de R$ 553,00:e) Mariana tem um saldo bancário negativo de R$ 258,00:f) A empresa de Odete teve lucro de R$ 100.000  neste mês:
12) Responda se as afirmações abaixo são verdadeiras ou falsas:
a) -5 é menor que +8b) +4 é maior que -8c) 0 é menor que -7 
d) 7 > -9
e) 12 < -19  
13) Assinale V ou F:
a) Antecessor de um número inteiro é o que vem imediatamente antes dele na seqüência dos números inteiros.
b) Antecessor de um número inteiro é o que vem imediatamente depois dele na seqüência dos números inteiros.
c) Sucessor de um número inteiro é o que vem imediatamente depois dele na seqüência dos números inteiros.d) Sucessor de um número inteiro é o que vem imediatamente antes dele na seqüência dos números inteiros.
e) Números consecutivos são três ou mais números quando um é sucessor do outro.
14) Vamos determinar o módulo dos números a seguir:
Módulo de + 4 = |+4| =
Módulo de –6 = |–6| =
Módulo de –10 = |–10| =
Módulo de +20 = |+20|=
15) Responda se a afirmação é verdadeira ou falsa. 
a) Todo número positivo é maior que um número negativo.b) Todo número negativo é maior que zero.c) O zero é maior que todos os números negativos.d) Qualquer número positivo é maior que zero.e) Considerando os números inteiros -3 e 6, o que está mais próximo da origem é o 6!f) Considerando os números -5 e 1, o maior é o 1! 

16) Para fazer um bolo, Renata gastou R$ 27,00. Ela vendeu o bolo por R$ 70,00. Qual foi o seu lucro?
17)Considere que na superfície do mar a altitude é zero. Use números negativos para indicar altitudes abaixo da superfície do mar e números positivos para indicar altitudes acima do nível do mar.
a) Em que altitude está o pássaro?
b) Em que altitude está o peixe?
c) Que distância separa o pássaro do peixe?




EXERCÍCIOS MÚLTIPLOS E SUBMÚLTIPLOS DO M²

Resultado de imagem para MULTIPLOS M²

Para medir superfícies, além do metro quadrado, podemos usar ainda os:

MÚLTIPLOS:

1000000 m² = 1 km² (quilometro quadrado)
10000 m² = 1 hm² (hectômetro quadrado)
100 m² = 1 dam² (decâmetro quadrado)

SUBMÚLTIPLOS

1 m² = 100 dm² (decímetro quadrado)
1 m² = 10000 cm² ( centímetro quadrado)
1 m = 1000000 mm² ( milímetro quadrado)

MUDANÇAS DE UNIDADE

Cada unidade de superfície é 100 vezes maior que a unidade imediatamente inferior.

km²-----hm²-----dam²-----m²-----dm²-----cm²-----mm²

A mudança de unidade se faz com o deslocamento da vírgula para a direita ou para a esquerda, movendo-se duas casas tanto para a direita quanto para esquerda.

exemplos:

a) transformar 73,58 dam² em metros quadrados:
73,58 dam² = ( 73,58 x 100) m² = 7358 m²

b) Transformar 0,54623 hm² em metros quadrados
0,54623 hm² = (0,54623 x 10000) m² = 5462,3 m²

c) transformar 18,57 dm² em metros quadrados:
18,57 dm² = ( 18,57 : 100) m² = 0,1857 m²


EXERCÍCIOS 


1) Transforme em m²


a) 7 km² (R: 7000000 m²)
b) 8 dam² (R: 800 m²)
c) 6,41 km² (R: 6410000 m²)
d) 5,3 hm² (R: 53000 m²)
e) 87,20 dm² (R: 0,8720 m²)
f) 44,93 cm² (R: 0,004493 m²)
g) 0,0095 hm² ( R: 95 m²)
h) 524,16 cm² (R: 0,052416 m²)



2) Faça a conversão de: 

a) 15 m² em dm² (15000 dm²)
b) 30 hm² em km² ( 0,30 km²)
c)0,83 cm² em mm² (83 mm²)
d) 3200 mm² em cm² (32 cm² )
e) 0,07 m² em cm² (700 cm²)
f) 581,4 m² em dm² (58140 dm²)
g) 739 dam² em km² (0,0739 km²)
h) 0,85 m² em hm² (0,00085 hm²)

Exercícios resolvidos Medidas de superfície / Área


Área

Área é a medida de uma superfície.

A área do campo de futebol é a medida de sua superfície (gramado).

Se pegarmos outro campo de futebol e colocarmos em uma malha quadriculada, a sua área será equivalente à quantidade de quadradinho. Se cada quadrado for uma unidade de área:





A medida de uma superfície chama-se área o metro quadrado (m²) é a unidade fundamental das medidas de superfície.

Dividimos o retângulo à esquerda em quadrados de 1 metro de lado.



Então o retângulo tem 15 m² de área.

Conclusão:

Podemos encontrar a área do retângulo multiplicando a medida da base pelo medida da altura



Resultado de imagem para AREA
ÁREAS DAS PRINCIPAIS FIGURAS PLANAS 

ÁREA DO QUADRADO

Exemplo:

Calcular a área de um quadrado que tem 5 cm de lado

Solução

A = 5 x 5
A = 25
Resposta: 25 cm²


EXERCÍCIOS 

1) Qual é a área de um azulejo quadrado de 15 cm de lado? (R: 225 cm²)

2) O perímetro de um quadrado mede 20 cm. Calcule a área do quadrado. (25 cm²)

3) O perímetro de um quadrado mede 14 m. Calcule a área do quadrado. (12,25 m²)



.ÁREA DE RETÂNGULO


Exemplos:
Calcular a área de um retângulo que tem 5 cm de base e 3 cm de altura
Solução:
A = 5 x 3
A = 15

EXERCÍCIOS



1) Um campo de futebol tem 90 m de comprimento por 60m de largura. Qual é a área desse campo? (R: 5400 m²)

2) Calcule a área de um retângulo cuja base mede 6 cm e a altura é igual à terça parte da base. (R: 12 cm²)

3) A altura de um retângulo é 2 cm e o seu perímetro 18 cm. Qual a área desse retângulo? (R: 14 cm²)

Resultado de imagem para AREA

Destaque!!!!!!!!!!!

Aula criativa de matemática sobre a conversão do dólar

Um emprego em um navio de cruzeiro pode ser uma grande chance de conhecer lugares novos e ganhar um bom salário. Quanto melhor for seu ingl...