terça-feira, 6 de setembro de 2016

Estudo dos sinais da função quadrática: exercícios, exemplos e teoria

Estudar o sinal de uma função, é determinar para quais valores reais de x a função é positiva, negativa ou nula. A melhor maneira de analisar o sinal de uma função é através do gráfico, pois permite-nos uma avaliação mais ampla da situação. Vamos analisar os gráficos das funções a seguir, de acordo com a sua lei de formação.

Observação: para construirmos o gráfico de uma função do 2º grau precisamos determinar o número de raízes da função, e se a parábola possui concavidade voltada para cima ou para baixo.

∆ = 0, uma raiz real.
Resultado de imagem para estudo dos sinais da função quadratica
∆ > 0, duas raízes reais e distintas

Resultado de imagem para estudo dos sinais da função quadratica

∆ < 0, nenhuma raiz real.
Resultado de imagem para estudo dos sinais da função quadratica

Para determinar o valor de ∆ e os valores das raízes, utilize o método de Bháskara.




Coeficiente a > 0, parábola com a concavidade voltada para cima
Coeficiente a < 0, parábola com a concavidade voltada para baixo 


Exemplo 1

y = x² – 3x + 2
x² – 3x + 2 = 0

Aplicando Bháskara
∆ = (−3)² – 4 * 1 * 2
∆ = 9 – 8
∆ = 1



A parábola possui concavidade voltada para cima em virtude de a > 0 e duas raízes reais e distintas.



Estudo dos sinais
 x < 1 ou x > 2, y > 0
 Valores entre 1 e 2, y < 0
 x = 1 e x = 2, y = 0


Exemplo 2

y = x² + 8x + 16
x² + 8x + 16 = 0

Aplicando Bháskara
∆ = 8² – 4 * 1 * 16
∆ = 64 – 64
∆ = 0


A parábola possui concavidade voltada para cima, em virtude de a > 0 e uma única raiz real.


Estudo dos sinais

 x = –4, y = 0
 x ≠ –4, y > 0


Exemplo 3

y = 3x² – 2x + 1
3x² – 2x + 1 = 0

Aplicando Bháskara
∆ = (–2)² – 4 * 3 * 1
∆ = 4 – 12
∆ = – 8

A parábola possui concavidade voltada para cima em decorrência de a > 0, mas não possui raízes reais, pois ∆ < 0.


 
Estudo dos sinais
 A função será positiva para qualquer valor real de x.

Exemplo 4

y = – 2x² – 5x + 3
– 2x² – 5x + 3 = 0

Aplicando Bháskara

∆ = (–5)² – 4 * (–2) * 3
∆ = 25 + 24
∆ = 49
A parábola possui concavidade voltada para baixo em face de a< 0 e duas raízes reais e distintas.


Estudo dos sinais:

 x < –3 ou x > 1/2, y < 0
 Valores entre – 3 e 1/2, y > 0
 x = –3 e x = 1/2, y = 0

Exemplo 5

y = –x² + 12x – 36
–x² + 12x – 36 = 0

Aplicando Bháskara
∆ = 12² – 4 * (–1) * (–36)
∆ = 144 – 144
∆ = 0




A parábola possui concavidade voltada para baixo em decorrência de a < 0 e uma única raiz real.


Estudo dos sinais
 x = 6, y = 0
 x ≠ 6, y < 0
Exercícios:
1)  Estude os sinais das seguintes funções do 2° grau:

a)  f (x) = x² - 8x + 12
b)  f (x) = -x² + 8x – 12
c)  f (x) = x² - 4x – 12
d) f (x) = -x² + 6x – 9
e)  f (x) = x² - 2x + 4
f)   f (x) = - 4x²
g)  f (x) = 1 – x²
h)  f (x) = 5x² + 15x
i)    f (x) = x² + x – 6
j)    f (x) = -2x² - x + 3

2)  Determine m Î R para que a função f (x) = x² + mx + 1 seja positiva

3) Calcule  o valor de p Î R a fim de que a função y = px² - 2x + p seja negativa.

4)  (Mackenzie – SP) Dado f (x) = 2x² - ax + 2a, sabe-se que f (x) > 0, para qualquer valor real de x. Qual é o maior valor inteiro que a pode assumir?

5)  (PUC – MG) Todos os pontos da parábola de equação y = x² + ax + 9 estão acima do eixo das abscissas. Qual é o intervalo ao qual a pode pertencer? 

6)Em cada um dos itens abaixo, use o discriminante para decidir o número de vezes em que o gráfico da função corta o eixo x .
(a) [Maple Math]
(b) [Maple Math]
(c) [Maple Math]
Resolução:
(a) O discriminante da equação x2 + 4 = 0 é negativo e, portanto, o gráfico da função. [Maple Math] não corta o eixo dos x.
(b) O discriminante da equação x2 + 4x + 4 = 0 é igual a zero e, portanto, o gráfico da função. [Maple Math] tangencia o eixo dos x.
(c) O discriminante da equação -x2 + 4x + 4 = 0 é positivo e, portanto, o grafico da função. [Maple Math] corta o eixo dos x em dois pontos.

7) Para quais valores de x reais a função: y= x2 – x - 6 é:
y=0     y>0   e y<0

8) Para quais valores de x reais a função: y= -x2 +4x +5 é:
y=0     y>0   e y<0





(Equipe Brasil Escola brasilescola.uol.com.br)
 

sábado, 3 de setembro de 2016

Exercícios resolvidos forma irredutível dos números racionais

Resultado de imagem para forma irredutivel da fração

EXERCÍCIOS

1) Aplique a regra de sinais para a divisão e dê o resultado:

a) -5/+9 =  (R:-)
b) -2/-3 = (R:+ )
c) +3/+4 = (R:+) 
d) -9/+5 = (R:-)
e) +7/-5 = (R:-)
f) -8/7 = (R:-)

2) Escreva os números racionais na forma irredutível:

a) 10/4 = 
b) -12/48 =
c) -7/35 = 
d) 18/-36 = 
e) -75/50 = 
f) -25/100 = 
g) 11/99 = 
h) -4/128 = 

(R:a)5/2; b)-1/4; c)-1/5; d)-1/2; e)-3/2; f)-1/4; g)1/9; h)-1/32)

3) Transforme as frações seguintes em números inteiros:

a) -12/6 =
b) -32/8 =
c) 20/10 =
d) -17/1 = 
e) -54/18 =
f) -45/15 =
g) 132/11 =


(R:a)-2; b)-4; c)2; d)-17; e)-3; f)-3; g)12)

4) Associe  corretamente as colunas:

Resultado de imagem para forma irredutivel da fração


(R:C - E - D - A - B)

sexta-feira, 2 de setembro de 2016

Exercícios resolvidos interpretando problemas simples

Resultado de imagem para interpretando problemas




1) Sergio e Carlinhos compraram 200 figurinhas. Destas, 36 eram repetidas. Das figurinhas restantes, couberam a Carlinhos 10 figurinhas a mais que a Sergio. Quantas figurinhas couberam a Carlinhos? (R: 87)

2) Os alunos e professores farão uma excursão cultural. São 120 alunos e 5 professores, que irão em 5 ônibus alugado. Quantas pessoas deverão ir em cada ônibus, sabendo-se que em cada ônibus deve ir o mesmo número de pessoas? (R: 25)

 3
) Quantas equipes de voleibol (e elementos) puderam ser formadas com 50 alunos? Restarão alunos fora da equipes? (R: 4 equipes com 12 elementos 2 ficam fora)

 4
) Quero distribuir meus 116 chaveiros entre 3 amigos de modo que cada um receba a mesma quantidade. Quantos chaveiros cada amigo vai receber? Quantos chaveiros ainda restarão para mim? (R: 38 chaveiros e 2 restão)

 5
) Cada embalagem tem 12 canetas coloridas. Quantas dessas embalagens podem ser feitas se tivermos 624 canetas? ( R: 52)

 6
) Para distribuir igualmente 726 laranjas em 6 caixas, quantas laranjas você deve colocarem cada caixa? (R: 121)

 7
) Uma fabrica produziu 1872 tabletes de chocolate, que devem ser distribuídos igualmente em 36 caixas. Quantos tabletes de chocolate serão colocados em cada caixa? ( R: 52)

 8
) Uma doceira produziu 702 balas de coco, as quais devem ser colocadas em pacotes. Se cada pacote forem colocadas 54 balas, quantos pacotes a doceira vai formar? (R: 13)

9) Se você trabalhar 5 dias e, por esse trabalho, receber 1205 reais, qual a quantia que você ganhará por dia? (241 reais)

10) Meia dúzia de objetos custa 450 reais. Quanto se pagará por quatro desses objetos? ( R:300)

11) Uma pesquisa perguntou a 1200 pessoas se liam jornal diariamente e 384 responderam que não . Quantas pessoas responderam que sim?
a) 816 (X)
b) 916
c) 1184
d) 1584

12) Num jogo, João Paulo, de 11 anos perdeu 280 pontos e ainda ficou com 1420. Quantos pontos ele tinha no início do jogo?
a) 1140
b) 1600
c) 1700 (X)
d) 1584

13) Isabel e Juliana colecionam papéis de carta, Isabel tem 137 e Juliana , 181 . Quantos papéis de carta Juliana tem a mais que Isabel?
a) 44 (X)
b) 144
c) 318
d) 2118

14) Os números que completam a sequencia { 28, 32, 36, 40,............} são:
a) 44, 50
b) 45, 48
c) 41, 42
d) 44, 48 (X)

15) João e Paulo têm juntos 51 cadernos. João têm 3 cadernos a mais que Paulo. Quantos cadernos tem cada um? (R: 24)

16) A soma das idades de Regina e Marcia é 45 anos. Regina é 5 anos mais velha que Márcia. Qual é a idade de Márcia? (R: 20)

17) A soma de nossas idades é 37 anos. Eu sou 7 anos mais velho que você. Quantos anos eu tenho? (R: 22)

18) A soma das idades de Helena, Mario e Silvia é 34 anos. Mario é 1 ano mais velho que Helena e Silvia 3 anos mais velha que Helena. Qual a idade de Helena? (R: 10)

19) A minha calculadora custou R$ 150,00 a menos do que a sua . As duas juntas custaram R$ 1.590,00. Qual o preço de cada uma? (R: 720,00 e 870,00)

Destaque!!!!!!!!!!!

Aula criativa de matemática sobre a conversão do dólar

Um emprego em um navio de cruzeiro pode ser uma grande chance de conhecer lugares novos e ganhar um bom salário. Quanto melhor for seu ingl...