sexta-feira, 25 de abril de 2014

Exercícios de adição e subtração de frações com base negativa



Para as operações com números racionais relativos são validas as regras operatórias das frações e dos números inteiros relativos.


ADIÇÃO

Para adicionarmos números racionais relativos (na forma de fração) procedemos do seguinte modo:

1) Reduzimos (se necessário) as frações dadas ao mesmo denominador positivo.

2) Somamos os numeradores de acordo com a regra de sinais da adição de inteiros.

EXEMPLOS:

a) (-2/3) + (+1/2) =
     -2/3 + 1/2=
     (-4 + 3) / 6 =
     -1/6

b) (+3/4) + (-1/2) =
       3/4 - 1/2 =
       (3-2)/ 4 =
       1/4

c) (-4/5) + (-1/2) =
      -4/5 -1/2 =
      (-8 -5) / 10 =
       -13/10




EXERCÍCIOS

1) Efetue as adições:

a) (+3/5) + (+1/2) =
b) (-2/3) + (+5/4) =
c) (-4/9) + (+2/3) =
d) (-3/7) + (+2/9) =
e) (-1/8) + (-7/8) =
f) (-1/3) + (-1/5) =
g) (-1/8) + (5/4) =
h) (+1/5) + ( +3/5) =

2) Efetue as adições:

a) (-2/5) + 3 =
b) (-1/6) + (+2) =
c) (-5/3) + (+1) =
d) (-4) + (-1/2) =
e) (-0,2) + (-1/5) =
f) (+0,4) + (+3/5) =
g) (-0,5) + (+0,7) =
h) (-02) + (-1/2) =

3) Efetue as seguintes adições:

a) (+5/8) + (+1/2) + ( -2/15) =
b) (+1/2) + (-1/3) + (+1/5) =
c) (-1/2) + (-4/10) + (+1/5) =
d) (-3/5) + (+2) + (-1/3) = 

SUBTRAÇÃO

Para encontrarmos a diferença entre dois números racionais, somamos o primeiro com o oposto do segundo

Exemplos

a) (+1/2) – (+1/4) = ½ -1/4 = 2/4 -1/4 = ¼
b) (-4/5) – (-1/2) = -4/5 + ½ = -8/10 + 5/10 = -3/10

Exercícios

1) Efetue as subtrações:

a) (+5/7) – (+2/3) =
b) (+2/3) – (+1/2) = 
c) (+2/3) – (+4/5) = 
d) (-7/8) – (-3/4) = 
e) (-2/5) – (-1/4) = 
f) (-1/2) – (+5/8) =
g) (+2/3) – ( (+1/5) = 
h) (-2/5) – ( +1/2) =

2) Efetue as subtrações:

a) (+1/2) – (+5) = 
b) (+5/7) – (+1) = 
c) 0 – ( -3/7) = 
d) (-4) – (-1/2) = 
e) (+0,3) – (-1/5) = 
f) (+0,7) – (-1/3) = 


3) Calcule

a) -1 – ¾ = (R: -7/4)
b) (-3/5) + (1/2) = (R: -1/10)
c) 2 – ½ -1/4 = (R: 5/4)
d) -3 -4/5 + ½ = (R: -33/10)
e) 7/3 + 2 -1/4 = (R: 49/12)
f) -3/2 + 1/6 + 2 -2/3 = (R: 0)
g) 1 – ½ + ¼ - 1/8 = (R:5/8)
h) 0,2 + ¾ + ½ - ¼ = (R:6/5)
i) ½ + (-0,3) + 1/6 = (R:11/30)
j) 1/5 + 1/25 + (-0,6) = (R: 1/10)

4) Calcule o valor de cada expressão:

a) 3/5 – 1 – 2/5 = (R: -4/5)
b) 3/5 – 0,2 + 1/10 = (R: ½)
c) -3 – 2 – 4/3 = (R: -19/3)
d) 4 – 1/10 + 2/5= (R: 43/10)
e) 2/3 – ½ -5 = (R: 29/6)
f) -5/12 – 1/12 + 2/3 = (R: 1/6)

5) Calcule o valor de cada expressões:

a) -1/3 + 2/9 – 4/3 = (R: -13/9)
b) -4 + ½ - 1/6 = (R:-11/3)
c) 0,3 + ½ - ¾ = (R: 1/20)
d) 1 + ¼ - 3/2 + 5/8 = (R: 3/8)
e) 0,1 + 3/2 – ¼ + 2 = (R: 67/20)
f) ¾ + 0,2 – 5/2 – 0,5 = ( R: - 41/20)

6) Calcule o valor de cada expressão

a) 1/2 – (-3/5) + 7/10 = (R: 9/5)
b) -(-1) – (- 4/3) + 5/6 = (R: 19/6)
c) 2 – ( - 2/3 – ¼) + 0,1 = (R: 181/60)
d) ( -1 + ½) – ( -1/6 + 2/3) = (R: -1)
e) 2 – [ 3/5 – ( -1/2 + ¼ ) ] = (R: 23/20)
f) 3 – [ -1/2 – (0,1 + ¼ )] = (R: 77/20)
g) (1/3 + ½) – (5/6.- ¾) = (R: ¾)
h) (5/2 – 1/3 – ¾ ) – (1/2 + 1) = (R: -1/12)
i) (1/4 + ½ + 2 ) + (-1/6 + 2/3) = (R: 13/4)
j) (-0,3 + 0,5 ) – ( -2 - 4/5) = (R: 3)
k) (1/6 + 2/3) – (4/10 – 3/5) + 1/3 = (R: 41/30)
l) 0,2 + (2/3 – ¼) – ( -7/12 + 4/3) = (R: -2/15)
m) (1 – ¼) + (2 + ½) – (1 - 1/3) – ( 2 – ¼ ) = (R: 5/6 )



Exercícios resolvidos Radiciação de Números Inteiros

Resultado de imagem para raiz de número negativo

Vamos recordar:

√49 = 7, porque 7² = 49

No conjunto dos números inteiros, a raiz quadrada de 49 pode ser:

+7, poque (+7)² = 49.

-7, porque (-7)² = 49.

Como o resultado de uma operação, deve ser único, vamos adotar o seguinte critério:

Exemplos:

a) +√16 = +4
b) - √16 = -4
c) √9 = 3
d) -√9 = -3

Os números negativos não têm raiz quadrada no conjunto Z

Veja:

a) √-9 = nenhum inteiro, pois (nenhum inteiro)² = -9
b) √-16 = nenhum inteiro, pois (nenhum inteiro)² = -16

EXERCÍCIOS

1) Determine as raízes:

a) √4 = (R:2)
b) √25 = (R:5)
c) √0 = (R:0)
d) -√25 = (R: -5)
e) √81 = (R:9)
f) -√81 =(R: -9)
g) √36 = (R:6)
h) -√1 =(R: -1)
i) √400 =(R:20)
j) -√121 = (R: -11)
k) √169 =(R:13)
l) -√900 = (R: -30)

2) Calcule caso exista em Z:

a) √4 = (R:2)
b) √-4 = NÃO EXISTE RAIZ REAL
c) -√4 = (R:-2)
d) √64 = (R:8)
e) √-64 =
NÃO EXISTE RAIZ REAL
f) -√64 = (R: -8)
g) -√100 =(R: -10)
h) √-100 = NÃO EXISTE RAIZ REAL

3) Calcule:

a) √25 + √16 = (R:9)
b) √9 - √49 = (R: -4)
c) √1 + √0 = (R:1)
d) √100 - √81 + √4 =(R:3)
e) -√36 + √121 + √9 = (R:8)
f) √144 + √169 -√81 =(R:16)



(Material de referência http://jmpmat13.blogspot.com.br/)

Exercícios resolvidos expressões numéricas com potências e Números inteiros

Resultado de imagem para expressões número negativo

1) Calcule o valor das expressões:

a) 5 + 4²- 1 = (R: 20)
b) 3⁴ - 6 + 2³ = (R: 83)
c) 2⁵ - 3² + 1⁹ = (R: 24)
d) 10²- 3² + 5 = (R: 96)e) 11² - 3² + 5 = (R: 117)
f) 5 x 3² x 4 = (R: 180)
g) 5 x 2³ + 4² = (R: 56)
h) 5³ x 2² - 12 = (R: 488)

2) Calcule o valor das expressões:

a) ( 4 + 3)² - 1 = (R: 48)
b) ( 5 + 1 )² + 10 = (R: 46)
c) ( 9 – 7 )³ x 8 = (R: 64)
d) ( 7² - 5²) + ( 5² - 3 ) = (R: 46)e) 6² : 2 - 1⁴ x 5 = (R: 13)
f) 3² x 2³ + 2² x 5² = (R: 172)

3) Calcule o valor das expressões:

a) 4²- 10 + (2³ - 5) = (R: 9)b) 30 – (2 + 1)²+ 2³ = (R: 29)
c) 30 + [6² : ( 5 – 3) + 1 ] = (R: 49)
d) 20 – [6 – 4 x( 10 - 3²) + 1] = (R: 17)
e) 50 + [ 3³ : ( 1 + 2) + 4 x 3] = (R: 71)f) 100 –[ 5² : (10 – 5 ) + 2⁴ x 1 ] = (R: 79)
g) [ 4² + ( 5 – 3)³] : ( 9 – 7)³ = (R: 3 )h) 7²+ 2 x[(3 + 1)² - 4 x 1³] = (R: 73)
i) 25 + { 3³ : 9 +[ 3² x 5 – 3 x (2³- 5¹)]} = (R: 64)

4) Calcule as expressões:

a) ( 8 : 2) . 4 + {[(3² - 2³) . 2⁴ - 5⁰] . 4¹}= (R:76)
b) ( 3² - 2³) . 3³ - 2³ + 2² . 4² = ( R:83)
c) ( 2⁵ - 3³) . (2² - 2 ) = (R: 10)
d) [2 . (10 - 4² : 2) + 6²] : ( 2³ - 2²) = ( R:10)
e) (18 – 4 . 2) . 3 + 2⁴ . 3 - 3² . ( 5 – 2) = (R: 51)
f) 4² . [2⁴ : ( 10 – 2 + 8 ) ] + 2⁰ = (R: 17)
g) [( 4² + 2 . 3²) + ( 16 : 8)² - 35]² + 1¹⁰ - 10⁰ = (R : 9)
h) 13 + ( 10 – 8 + (7 – 4)) = (R: 18)
i) (10 . 4 + 18 – ( 2 . 3 +6)) = (R:46)
j) 7 . ( 74 – ( 4 + 7 . 10)) = (R: 0)
k) ( 19 : ( 5 + 3 . 8 – 10)) = (R : 1)
l) (( 2³ + 2⁴) . 3 -4) + 3² = (R: 77)
m) 3 + 2 . ((3²- 2⁰) + ( 5¹ - 2²)) + 1 = (R: 22)

Redução de termos semelhantes: exercícios resolvidos e teoria

Dois ou mais termos são semelhantes quando têm a mesma parte literal.
Exemplos:
a)     5m  e -7 m são termos semelhantes
b)     2xy³ e 9y³x São termos semelhantes
Obs: veja que não importa a ordem dos fatores literais

Não são semelhantes os termos :
a)     4x e 7x²
b)     3xy² e 4x²y


Obs : que os expoentes de x são diferentes

EXERCÍCIOS
1)     Quais os pares de termos semelhantes?
a)     7a e 4a (X)
b)     2x² e -6x² (X)
c)      4y e 5y²
d)     8xy e –xy (X)
e)     -5a e -4ab
f)      4ab e 5/8 ab (X)
g)     8xy e 5yx (X)
h)     4x²y e –xy
i)       xy²e 2x²y
j)      3acb e abc (X)
k)     x/2 e 7x (X)

2)     Considere:
a)     3ab²
b)     -6x²
c)      8a²b
d)     7a²b
e)     5x
f)      9x²
g)     -4x²
h)     -2ab²
i)       -ab²
j)      3ax

Forme o conjunto de termos semelhantes

REDUÇÃO DE TERMOS SEMELHANTES

Quando numa mesma expressão, tivermos dois ou mais termos semelhantes, podemos reduzi-los todos a um único termo, usando a propriedade distibutiva
Exemplos:
1)     5x + 3x – 2x = 6x
2)     7xy – xy + 5xy = 11xy

Conclusão: somamos os coeficientes e conservamos a parte literal

EXERCÍCIOS

1)     Reduza os termos semelhantes:
a)     8a + 2a = (R: 10a)
b)     7x – 5x = (R: 2x)
c)      2y²- 9y² = ( R: -7y²)
d)     4a² - a² = (R: 3a²)
e)     4y – 6y =  (R: -2y)
f)      -3m²+ 8m² = (R: 5m²)
g)     6xy²- 8y²x = (R: -2xy²)
h)     5a – 5a = (R: 0)

2)     Reduza os termos semelhantes:
a)     8x + 1x/2 = (R: 17x/2)
b)     3a – 2a/3 = (R: 7a/3)
c)      1x/2 + 1x/3 = (R: 5x/6) 
d)     2 x²/3 - 1 x²/2 = (R: 1 x² /6)
e)     1y/2 – 2y/5 = (R: 1y/10)
f)      2x + 1x/2 -3x/4 = (R: 7x/4)

3)     Reduza os termos semelhantes:
a)     7x -5x + 3x = (R: 5x)
b)     2y – y – 10y = (R: -9y)
c)      4a + a – 7a = (R: -2a)
d)     x²+ x² - 2x² = (R: 0)
e)     ab – ab + 5ab = (R: 5ab)
f)      4x³- x³ + 2x³ = (R: 5x³)
g)     10x – 13x –x = (R: -4x)
h)     8x – 10x + 4x = (R: 2x)

Há casos em que numa expressão há termos diferentes e termos semelhantes entre si. Observe que a redução só pode ser feita com termos semelhantes

Exemplo 1
7x + 8y -2x – 5y
7x – 2x + 8y – 5y
5x + 3y

Exemplo 2
4a³ + 5a² + 7a – 2a²+ a³- 9a + 6
4a² + a³+ 5a² - 2a² + 7a – 9a + 6
5a³ + 3a² - 2a + 6

Exercícios
1)      Reduza os termos semelhantes


a)     6a + 3a -7
b)     4a – 5 – 6a
c)      5x²+ 3x² -4
d)     X – 8 + x
e)     4m – 6m -1
f)      4a – 3 +8
g)     x²- 5x + 2x²
h)     4a – 2m – a
i)       Y + 1 – 3y
j)      X + 3xy + x

2)      Reduza os termos semelhantes:


a)     1/2x – 1/3y + x
b)     4a – 1/2a + 5 – 1/3
c)      1/2a – 3a²+ a + 3a
d)     4y – 3/5y +1/2 + 1
e)     2m + 3 + m/2 – 1/2


3) Quais pares de termos são semelhantes?

a) 7a e 4a 
b) 2x² e -6x² 
c) 4y e 5y²
d) 8xy e –xy  
e) 5a e 4ab
f) 4ab e 5/8 ab  
g) 8xy e 5yx 
h) 4x²y e –xy
i) xy² e 2x²y
j) 3acb e abc  

ELIMINAÇÃO DE PARENTESES, COLCHETES E CHAVES

Vamos lembrar que:
Ao eliminar parênteses precedidos pelo sinal de (+), não toque o sinais dos termos incluídos nos parênteses.
Exemplos:
2x + (5x -3)
2x + 5x – 3
7x – 3

2) Ao eliminarmos parênteses precedidos pelo sinal negativo (-) troque os sinais incluídos nos parênteses.
Exemplo:
7x – (4x – 5)
7x -4x + 5
3x + 5

Para eliminação de colchetes e chaves são validas as regras acima.
Exemplos
1) 5x + (3x – 4)  - (2x – 9)
5x + 3x – 4 – 2x + 9
5x + 3x – 2x – 4 + 9
6x + 5

2) 8x – [ -2x + (10 + 3x – 7)]
8x – [ -2x + 10 +3x – 7]
8x +2x – 10 – 3x + 7
8x + 2x -3x - 10 +7
7x – 3

3) 2a² + { 3a – [ 6a – (3a² + a)]}
2a² + { 3a – [ 6a – 3a² - a]}
2a² + { 3a –  6a + 3a² + a}
2a² + 3a –  6a + 3a² + a
2a² + 3a² + 3a –  6a +a
5 a² -2ª

EXERCÍCIOS

1)      Reduza os termos semelhantes nas seguintes expressões algébricas:
a)      6x +  (2x – 4) – 2  = (R: 8x -6)
b)      7y -8 – (5y – 3)  = (R: 2y -5)
c)       4x – ( -3X + 9 – 2X) = ( R: 9x – 9)
d)      3x – (-2x + 5) – 8x + 9 = (R: -3x + 4)
e)      4x – 3 + (2x + 1) = (R: 6x -2)
f)       (x + y) – (x + 2y) = (R: -y)
g)      ( 3x – 2y) + (7x + y) = (R: 10x – 19)
h)      –(8a + 4 – ( 3a + 2) = (R: -11a -6)

2)      Reduza os termos semelhantes nas  seguintes expressões algébricas

a)      5a + (3a -2) – (10a – 8) = (R: -2a + 6)
b)      6x + (5x -7) – (20 + 3x ) = (R: 8x -27)
c)       (x + y + z) + x – (3y + z) = ( R: 2x – 2y)
d)      (m + 2n ) – ( r – 2n) – ( n+ r)  = (R: m + 3n – 2r)
e)      – (6y + 4x ) + ( 3y – 4x ) – (-2x + 3y)  = (R: -6y – 6x)

3)       Reduza os termos semelhantes nas  seguintes expressões algébricas
a)      6x² - [ 4x² + (3x – 5) + x] = (R: 2x²- 4x + 5)
b)      3X + { 2Y – [ 5X – (Y + X)]} = (R: -1x + 3y)
c)       – 3x + [ x² - ( 4x² - x ) + 5x] = (R: 0 )
d)      Xy – [ 2x + (3xy – 4x ) + 7x]  = (R: 2xy – 5x)
e)      8a – [ ( a + 2m) – ( 3a – 3m)] = (R: 10a – 5m)
f)       a– (b – c) + [ 2a + (3b + c)]  = (R: 3a + 2b + 2c)
g)      –[x + (7 – x) – (5 + 2x)]  = (R: -2x -2)
h)      { 9x – [ 4x – (x – y)- 5y] + y} = (R: 6x + 5y)
i)        (3a + 2m ) – [ ( a – 2m) – (6a + 2m)] = (R: 8a + 6m)
j)        7x³- { 3x² - x – [ 2x – { 5x³ - 6x² ) – 4x ]} = (R: 2x³ + 3x²- 1x)
k)      2y – { 3y + [4y – (y – 2x) + 3x ] – 4x } + 2x  = (R: 11y – 4x)
l)        8y + { 4y – [ 6x – y- (4x – 3y) – y ] – 2x } = (R: 6x + 4y)
m)    4x – { 3x + [ 4x – 3y – (6x – 5y ) – 3x ] – 6y}
n)      3x – { 3x – [3x – (3x –y) – y ] – y} - y

4)      Reduza os termos semelhantes das expressões  algébricas
a)      -2n – (n – 8) + 1 =  (R: -3n + 9)
b)      5 – ( 2a – 5 ) + a = (R: -a + 10)
c)       3x + ( -4 – 6x) + 9 = (R:  -3x + 5)
d)      8y – 8 – ( -3y + 5) =  (R: 11y – 13)
e)      a – [ n + ( a + 3) ] = (R: -n -3)
f)       5 + [ x – (3 – x)] = (R: 2x + 2)
g)      x² - [ x – (5 - x²)] = (R: -x + 5)
h)      5x – y – [ x – ( x – y)] = (R: 5x – 2y)
5)      Reduza os termos semelhantes das expressões  algébricas
a)      2x + ( 2x + y) – (3x – y) + 9x = (R: 10x + 2y)
b)      5a – { 5a – [ 5a – (5a – m) – m] – m } – m = (R: 0)
c)       – { 7a – m – [ 4m – (n – m + 3a) – 4a] + n } = (R : 14a + 6m – 2n)
d)      5xy – [ - (2xy + 5x) + [ 3Y – (-XY + X + 3XY)]} = (R: 9X + 6X -3Y)

e)      – {x – 2y + y – [ 3x + 5xy + 6y – (x –y) + 8 ]} = (R: x + 8y + 5xy + 8)


(Material  de referência http/jmpgeo.blogspot.com/)

Destaque!!!!!!!!!!!

Aula criativa de matemática sobre a conversão do dólar

Um emprego em um navio de cruzeiro pode ser uma grande chance de conhecer lugares novos e ganhar um bom salário. Quanto melhor for seu ingl...