terça-feira, 27 de maio de 2014

Como construir a bissetriz de um ângulo?

 Se construirmos um ângulo qualquer e depois traçarmos uma semi-reta de mesma origem e interior a esse ângulo, veremos que o tal ângulo ficará dividido em duas partes.
As medidas dos dois ângulos, formados pela semi-reta que construímos no interior do ângulo original com cada lado dele, vão depender da posição em que colocamos a dita semi-reta.
Haverá uma única posição em que as medidas dos dois ângulos serão iguais. É à semi-reta nessa posição que chamamos bissetriz de um ângulo.

DEFINIÇÃO DE BISSETRIZ

Podemos então definir bissetriz como:
Bissetriz é a semi-reta de mesma origem e interior a um determinado ângulo que o divide em dois ângulos congruentes, ou seja, em dois ângulos de medidas iguais.

CONSTRUÇÃO DE UMA BISSETRIZ

Vamos agora, ver como é que se traça uma bissetriz. Necessitaremos de papel, régua, lápis e compasso.
1) Primeiramente, com a régua e o lápis, construímos, no papel, um ângulo qualquer. Partindo de um ponto O, que será o nosso vértice, traçamos uma semi-reta OA e depois uma semi-reta OB formando uma abertura.
Ângulo AÔB

2) Pegamos, agora, o compasso. Com a ponta seca no ponto Oe com uma abertura qualquer, traçamos um arco de circunferência que intersecte os dois lados do ângulo, definindo os pontos C e D.
Definindo os pontos C e D nos lados do ângulo AÔB. Início da construção da bissetriz.iz.

3) Ainda com o compasso, e com uma abertura um pouco maior do que o arco CD, colocamos a ponta seca no ponto C e traçamos um arco no interior do ângulo. Com a mesma abertura, colocamos a ponta seca no ponto D e traçamos outro arco de modo que os dois arcos traçados se intersectem. Definimos, assim, o ponto E.
Definição do ponto E, auxiliar da construção da bissetriz de um ângulo.

4) Pegamos, então, o lápis e a régua e traçamos uma semi-reta com início em O e que passe pelo ponto E.
Bissetriz do ângulo. Semi-reta que começa em O e passa pelo ponto E.

5) A esta semi-reta OE, que divide o ângulo AÔB em duas partes iguais, ou seja, em dois ângulos congruentes (mesma medida), chamamos bissetriz.
6) Essa construção é válida tanto para ângulos agudos como para ângulos obtusos





(Material de referência http://www.sofazquemsabe.com)

Nenhum comentário:

Postar um comentário

Destaque!!!!!!!!!!!

Aula criativa de matemática sobre a conversão do dólar

Um emprego em um navio de cruzeiro pode ser uma grande chance de conhecer lugares novos e ganhar um bom salário. Quanto melhor for seu ingl...