Pages

quinta-feira, 3 de dezembro de 2015

Exercícios resolvidos Adição e subtração de números inteiros


Resultado de imagem para regra de sinal soma
1) Adição de números positivos


A soma de dois números positivos é um número positivo.

EXEMPLO

a) (+2) + (+5) = +7
b) (+1) + (+4) = +5
c) (+6) + (+3) = +9



Observe que escrevemos a soma dos números inteiros sem colocar o sinal + da adição e eliminamos os parênteses das parcelas.



2) Adição de números negativos


A soma de dois números negativos é um número negativo

Exemplo

a) (-2) + (-3) = -5
b) (-1) + (-1) = -2
c) (-7) + (-2) = -9



Observe que podemos simplificar a maneira de escrever deixando de colocar o sinal de + na operação e eliminando os parênteses das parcelas.

EXERCÍCIOS

1) Calcule

a) +5 + 3 = (R:+8)
b) +1 + 4 = (R: +5)
c) -4 - 2 = (R: -6)
d) -3 - 1 = (R: -4)
e) +6 + 9 = (R: +15)
f) +10 + 7 = (R: +17)
g) -8 -12 = (R: -20)
h) -4 -15 = (R: -19)
i) -10 - 15 = (R: -25)
j) +5 +18 = (R: +23)
l) -31 - 18 = (R: -49)
m) +20 +40 = (R: + 60)
n) -60 - 30 = (R: -90)
o) +75 +15 = (R: +90)
p) -50 -50 = (R: -100)

2) Calcule:

a) (+3) + (+2) = (R: +5)
b) (+5) + (+1) = (R: +6)
c) (+7) + ( +5) = (R: +12)
d) (+2) + (+8) = (R: +10)
e) (+9) + (+4) = (R: +13)
f) (+6) + (+5) = (R: +11)
g) (-3) + (-2) = (R: -5)
h) (-5) + (-1) = (R: -6)
i) (-7) + (-5) = (R: -12)
j) (-4) + (-7) = (R: -11)
l) (-8) + ( -6) = (R: -14)
m) (-5) + ( -6) = (R: -11)

3) Calcule:

a) ( -22) + ( -19) = (R: -41)
b) (+32) + ( +14) = (R: +46)
c) (-25) + (-25) = (R: -50)
d) (-94) + (-18) = (R: -112)
e) (+105) + (+105) = (R: +210)
f) (-280) + (-509) = (R: -789)
g) (-321) + (-30) = (R: -350)
h) (+200) + (+137) = (R: +337)

3) Adição de números com sinais diferentes

A soma de dois números inteiros de sinais diferentes é obtida subtraindo-se os valores absolutos, dando-se o sinal do número que tiver maior valor absoluto.

exemplos

a) (+6) + ( -1) = +5
b) (+2) + (-5) = -3
c) (-10) + ( +3) = -7

simplificando a maneira de escrever

a) +6 - 1 = +5
b) +2 - 5 = -3
c) -10 + 3 = -7

Note que o resultado da adição tem o mesmo sinal que o número de maior valor absoluto

Observação:

Quando as parcelas são números opostos, a soma é igual a zero.

Exemplo

a) (+3) + (-3) = 0
b) (-8) + (+8) = 0
c) (+1) + (-1) = 0

simplificando a maneira de escrever

a) +3 - 3 = 0
b) -8 + 8 = 0
c) +1 - 1 = 0

4) Um dos números dados é zero

Quando um dos números é zero , a soma é igual ao outro número.

exemplo

a) (+5) +0 = +5
b) 0 + (-3) = -3
c) (-7) + 0 = -7

Simplificando a maneira de escrever

a) +5 + 0 = +5
b) 0 - 3 = -3
c) -7 + 0 = -7

exercícios

1) Calcule:

a) +1 - 6 = -5
b) -9 + 4 = -5
c) -3 + 6 = +3
d) -8 + 3 = -5
e) -9 + 11 = +2
f) +15 - 6 = +9
g) -2 + 14 = +12
h) +13 -1 = +12
i) +23 -17 = +6
j) -14 + 21 = +7
l) +28 -11 = +17
m) -31 + 30 = -1

2) Calcule:

a) (+9) + (-5) = +4
b) (+3) + (-4) = -1
c) (-8) + (+6) = -2
d) (+5) + (-9) = -4
e) (-6) + (+2) = -4
f) (+9) + (-1) = +8
g) (+8) + (-3) = +5
h) (+12) + (-3) = +9
i) (-7) + (+15) = +8
j) (-18) + (+8) = -10
i) (+7) + (-7) = 0
l) (-6) + 0 = -6
m) +3 + (-5) = -2
n) (+2) + (-2) = 0
o) (-4) +10 = +6
p) -7 + (+9) = +2
q) +4 + (-12) = -8
r) +6 + (-4) = +2

3) Calcule

a) (+5 + (+7) = +12
b) (-8) + (-9) = -17
c) (-37) + (+35) = -2
d) (+10) + (-9) = +1
e) (-15 ) + (+15) = 0
f) (+80) + 0 = +80
g) (-127) + (-51) = -178
h) (+37) + (+37) = +74
i) (-42) + (-18) = -60
j) (-18) + (+17) = -1
l) (-18) + (+19) = +1
m) (-1) + (-42) = -43
n) (+325) + (-257) = +68
o) 0 + (-75) = -75
p) (-121) + (+92) = -29
q ) (-578) + (-742) = -1320
r) (+101) + (-101) = 0
s) (-1050) + (+876) = -174



PROPRIEDADE DA ADIÇÃO

1) Fechamento : a soma de dois números inteiros é sempre um número inteiro

exemplo (-4) + (+7) =( +3)

2) Comutativa: a ordem das parcelas não altera a soma.

exemplo: (+5) + (-3) = (-3) + (+5)

3) Elemento neutro: o número zero é o elemento neutro da adição.

exemplo: (+8) + 0 = 0 + (+8) = +8

4) Associativa: na adição de três números inteiros, podemos associar os dois primeiros ou os dois últimos, sem que isso altere o resultado.

exemplo: [(+8) + (-3) ] + (+4) = (+8) + [(-3) + (+4)]

5) Elemento oposto: qualquer número inteiro admite um simétrico ou oposto.

exemplo: (+7) + (-7) = 0


ADIÇÃO DE TRÊS OU MAIS NÚMEROS


Para obter a soma de três ou mais números adicionamos os dois primeiros e, em seguida, adicionamos esse resultado com o terceiro, e assim por diante.

exemplos

1) -12 + 8 - 9 + 2 - 6 =
= -4 - 9 + 2 - 6 =
= -13 + 2 - 6 =
= -11 - 6 =
= -17

2) +15 -5 -3 +1 - 2 =
= +10 -3 + 1 - 2 =
= +7 +1 -2 =
= +8 -2 =
= +6

Na adição de números inteiros podemos cancelar números opostos, poque a soma deles é zero.


INDICAÇÃO SIMPLIFICADA


a) podemos dispensar o sinal de + da primeira parcela quando esta for positiva.


exemplos


a) (+7) + (-5) = 7 - 5 = +2

b) (+6) + (-9) = 6 - 9 = -3




b) Podemos dispensar o sinal + da soma quando esta for positiva


exemplos


a) (-5) + (+7) = -5 + 7 = 2

b) (+9) + (-4) = 9 - 4 = 5




EXERCÍCIOS


1) Calcule


a) 4 + 10 + 8 = (R: 22)
b) 5 - 9 + 1 = (R: -3)
c) -8 - 2 + 3 = (R: -7)
d) -15 + 8 - 7 = (R: -14)
e) 24 + 6 - 12 = (R:+18)
f) -14 - 3 - 6 - 1 = (R: -24)
g) -4 + 5 + 6 + 3 - 9 = (R: + 1)
h) -1 + 2 - 4 - 6 - 3 - 8 = (R: -20)
i) 6 - 8 - 3 - 7 - 5 - 1 + 0 - 2 = (R: -20)
j) 2 - 10 - 6 + 14 - 1 + 20 = (R: +19)
l) -13 - 1 - 2 - 8 + 4 - 6 - 10 = (R: -36)


2) Efetue, cancelando os números opostos:


a) 6 + 4 - 6 + 9 - 9 = (R: +4)
b) -7 + 5 - 8 + 7 - 5 = (R: -8)
c) -3 + 5 + 3 - 2 + 2 + 1 = (R: +6)
d) -6 + 10 + 1 - 4 + 6= (R: +7)
e) 10 - 6 + 3 - 3 - 10 - 1 = (R: -7)
f) 15 - 8 + 4 - 4 + 8 - 15 = (R: 0)


3) Coloque em forma simplificada ( sem parênteses)


a) (+1) + (+4) +(+2) = (R: 1 +4 + 2)
b) (+1) + (+8) + (-2) = (R: 1 + 8 - 2)
c) (+5) +(-8) + (-1) = (R: +5 - 8 - 1)
d) (-6) + (-2) + (+1) = (R: -6 - 2 + 1)


4) Calcule:


a) (-2) + (-3) + (+2) = (R: -3)
b) (+3) + (-3) + (-5) = (R: -5)
c) (+1) + (+8) +(-2) = (R: +7 )
d) (+5) + (-8) + (-1) = (R: -4)
e) (-6) + (-2) + (+1) = (R: -7)
f) (-8) + ( +6) + (-2) = (R: -4)
g) (-7) + 6 + (-7) = (R: -8)
h) 6 + (-6) + (-7) = (R: -7)
i) -6 + (+9) + (-4) = (R: -1)
j) (-4) +2 +4 + (+1) = (R: +3)


5) Determine as seguintes somas 



a) (-8) + (+10) + (+7) + (-2) = (R: +7)
b) (+20) + (-19) + (-13) + (-8) = (R: -20)
c) (-5) + (+8) + (+2) + (+9) = (R: +14)
d) (-1) + (+6) + (-3) + (-4) + (-5) = (R: -7)
e) (+10) + (-20) + (-15) + (+12) + (+30) + (-40) = (R: -23)
f) (+3) + (-6) + (+8) = (R: +5)
g) (-5) + (-12) + (+3) = (R: -14)
h) (-70) + (+20) + (+50) = (R: 0)
i) (+12) + (-25) + (+15) = (R: +2)
j) (-32) + (-13) + (+21) = (R: -24)
l) (+7) + (-5) + (-3) + (+10) = (R: +9)
m) (+12) + (-50) + (-8) + (+13) = (R: -33)
n) (-8)+(+4)+ (+8) + (-5) + (+3) = (R: +2)
o) (-36) + (-51) + (+100) + (-52) = (R: -39)
p) (+17) + (+13) + (+20) + (-5) + (-45) = (R:0)

6) Dados os números x= 6, y = 5 e z= -6, calcule


a) x + y = (R: +11)
b) y + z = (R: -4)
c) x + z = (R: -3)


SUBTRAÇÃO


A operação de subtração é uma operação inversa à da adição


Exemplos 

a) (+8) - (+4) = (+8) + (-4) = = +4
b) (-6) - (+9) = (-6) + (-9) = -15
c) (+5) - (-2) = ( +5) + (+2) = +7


Conclusão: Para subtraimos dois números relativos, basta que adicionemos ao primeiro o oposto do segundo.

Observação: A subtração no conjunto Z tem apenas a propriedade do fechamento ( a subtração é sempre possivel) 



ELIMINAÇÃO DE PARÊNTESES PRECEDIDOS DE SINAL NEGATIVO



Para facilitar o cálculo, eliminamos os parênteses usando o segnificado do oposto

veja:

a) -(+8) = -8 (significa o oposto de +8 é -8 )

b) -(-3) = +3 (significa o oposto de -3 é +3)

analogicamente:

a) -(+8) - (-3) = -8 +3 = -5

b) -(+2) - (+4) = -2 - 4 = -6

c) (+10) - (-3) - +3) = 10 + 3 - 3 = 10

conclusão: podemos eliminar parênteses precedidos de sinal negativo trocando-se o sínal do número que está dentro dos parênteses.

EXERCÍCIOS

1) Elimine os parênteses

a) -(+5) = -5
b) -(-2) = +2
c) - (+4) = -4
d) -(-7) = +7
e) -(+12) = -12
f) -(-15) = +15
g) -(-42) = +42
h) -(+56) = -56

2) Calcule:

a) (+7) - (+3) = (R: +4)
b) (+5) - (-2) = (R: +7)
c) (-3) - ( +8) = (R: -11)
d) (-1) -(-4) = (R: +3)
e) (+3) - (+8) = (R: -5)
f) (+9) - (+9) = (R: 0 ) 
g) (-8) - ( +5) = (R: -13)
h) (+5) - (-6) = (R: +11)
i) (-2) - (-4) = (R: +2)
j) (-7) - (-8) = (R: +1)
l) (+4) -(+4) = (R: 0)
m) (-3) - ( +2) = (R: -5) 
n) -7 + 6 = (R: -1)
o) -8 -7 = (R: -15)
p) 10 -2 = (R: 8)
q) 7 -13 = (R: -6)
r) -1 -0 = (R: -1)
s) 16 - 20 = (R: -4)
t) -18 -9 = (R: -27)
u) 5 - 45 = (R:-40)
v) -15 -7 = (R: -22)
x) -8 +12 = (R: 4)
z) -32 -18 = (R:-50)

3) Calcule:

a) 7 - (-2) = (R: 9)
b) 7 - (+2) = (R: 5)
c) 2 - (-9) = (R: 11)
d) -5 - (-1) = (R: -4)
e) -5 -(+1) = (R: -6) 
f) -4 - (+3) = (R: -7) 
g) 8 - (-5) = (R: 13)
h) 7 - (+4) = (R: 3)
i) 26 - 45 = (R: -19)
j) -72 -72 = (R: -144)
l) -84 + 84 = (R: 0) 
m) -10 -100 = (R: -110)
n) -2 -4 -1 = (R: -7)
o) -8 +6 -1 = (R: -3)
p) 12-7 + 3 = (R: 8)
q) 4 + 13 - 21 = (R: -4)
r) -8 +8 + 1 = (R: 1)
s) -7 + 6 + 9 = (R: 8)
t) -5 -3 -4 - 1 = (R: -13)
u) +10 - 43 -17 = (R: -50)
v) -6 -6 + 73 = (R: 61)
x) -30 +30 - 40 = (R: -40)
z) -60 - 18 +50 = (R: -28)



4) Calcule:

a) (-4) -(-2)+(-6) = (R: -8)
b) (-7)-(-5)+(-8) = (R: -10)
c) (+7)-(-6)-(-8) = (R: 21)
d) (-8) + (-6) -(+3) = (R: -17)
e) (-4) + (-3) - (+6) = (R: -13)
f) 20 - (-6) - (-8) = (R: 34)
g) 5 - 6 - (+7) + 1 = (R: -7)
h) -10 - (-3) - (-4) = (R: -3)
i) (+5) + (-8) = (R: -3)
j) (-2) - (-3) = (R: +1)
l) (-3) -(-9) = (R: +6)
m) (-7) - (-8) =(R: +1)
n) (-8) + (-6) - (-7) = (R: -7)
o) (-4) + (-6) + (-3) = (R: -13)
p) 15 -(-3) - (-1) = (R: +19)
q) 32 - (+1) -(-5) = (R: +36)
r) (+8) - (+2) = (R:+6)
s) (+15) - (-3) = (R: +18)
t) (-18) - (-10) = (R: -8)
u) (-25) - (+22) = (R:-47)
v) (-30) - 0 = (R: -30)
x) (+180) - (+182) = (R: -2)
z) (+42) - (-42) = (R: +84)

5) Calcule:

a) (-5) + (+2) - (-1) + (-7) = (R: -9)
b) (+2) - (-3) + (-5) -(-9) = (R: 9)
c) (-2) + (-1) -(-7) + (-4) = (R: 0)
d) (-5) + (-6) -(-2) + (-3) = (R: -12)
e) (+9) -(-2) + (-1) - (-3) = (R: 13)
f) 9 - (-7) -11 = (R: 5 )
g) -2 + (-1) -6 = (R: -9)
h) -(+7) -4 -12 = (R: -23)
i) 15 -(+9) -(-2) = (R: 8 )
j) -25 - ( -5) -30 = (R: -50)
l) -50 - (+7) -43 = (R: -100)
m) 10 -2 -5 -(+2) - (-3) = (R: 4) 
n) 18 - (-3) - 13 -1 -(-4) = (R: 11)
o) 5 -(-5) + 3 - (-3) + 0 - 6 = (R: 10)
p) -28 + 7 + (-12) + (-1) -4 -2 = (R: -40)
q) -21 -7 -6 -(-15) -2 -(-10) = (R: -11)
r) 10 -(-8) + (-9) -(-12)-6 + 5 = (R: 20)
s) (-75) - (-25) = (R: -50)
t) (-75) - (+25) = (R: -100)
u) (+18) - 0 = (R: +18)
v) (-52) - (-52) = (R:0)
x) (-16)-(-25) = (R:+9)
z) (-100) - (-200) = (R:+100)





ELIMINAÇÃO DOS PARENTESES



1) parenteses precedidos pelo sinal +

Ao eliminarmos os parênteses e o sinal + que os precede, devemos conservar os sinais dos números contidos nesses parênteses.

exemplo

a) + (-4 + 5) = -4 + 5

b) +(3 +2 -7) = 3 +2 -7

2) Parênteses precedidos pelo sinal -

Ao eliminarmos os parênteses e o sinal de - que os precede, devemos trocar os sinais dos números contidos nesses parênteses.

exemplo

a) -(4 - 5 + 3) = -4 + 5 -3

b) -(-6 + 8 - 1) = +6 -8 +1

EXERCÍCIOS

1) Elimine os parênteses:

a) +(-3 +8) = (R: -3 + 8)
b) -(-3 + 8) = (R: +3 - 8)
c) +(5 - 6) = (R: 5 -6 )
d) -(-3-1) = (R: +3 +1)
e) -(-6 + 4 - 1) = (R: +6 - 4 + 1)
f) +(-3 -2 -1) = (R: -3 -2 -1 )
g) -(4 -6 +8) = (R: -4 +6 +8) 
h) + (2 + 5 - 1) = (R: +2 +5 -1)

2) Elimine os parênteses e calcule:

a) + 5 + ( 7 - 3) = (R: 9)
b) 8 - (-2-1) = (R: 11)
c) -6 - (-3 +2) = (R: -5)
d) 18 - ( -5 -2 -3 ) = (R: 28)
e) 30 - (6 - 1 +7) = (R: 18)
f) 4 + (-5 + 0 + 8 -4) = (R: 3)
g) 4 + (3 - 5) + ( -2 -6) = (R: -6)
h) 8 -(3 + 5 -20) + ( 3 -10) = (R: 13)
i) 20 - (-6 +8) - (-1 + 3) = (R: 16)
j) 35 -(4-1) - (-2 + 7) = (R: 27)

3) Calcule:

a) 10 - ( 15 + 25) = (R: -30)
b) 1 - (25 -18) = (R: -6)
c) 40 -18 - ( 10 +12) = (R: 0)
d) (2 - 7) - (8 -13) = (R: 0 )
e) 7 - ( 3 + 2 + 1) - 6 = (R: -5) 
f) -15 - ( 3 + 25) + 4 = (R: -39) 
g) -32 -1 - ( -12 + 14) = (R: -35)
h) 7 + (-5-6) - (-9 + 3) = (R: 2)
i) -(+4-6) + (2 - 3) = (R: 1)
j) -6 - (2 -7 + 1 - 5) + 1 = (R: 4)



Destaque!!!!!!!!!!!

Aula criativa de matemática sobre a conversão do dólar

Um emprego em um navio de cruzeiro pode ser uma grande chance de conhecer lugares novos e ganhar um bom salário. Quanto melhor for seu ingl...