Pages

quinta-feira, 3 de dezembro de 2015

Exercícios resolvidos Potenciação de números inteiros


A potenciação é uma multiplicação de fatores iguais

Exemplos 2³ = 2 .2 .2 = 8

Você sabe também que:

2 é a base
3 é o expoente
8 é a potência ou resultado

1) O expoente é par

a) (+7)² = (+7) . (+7) = +49
b) (-7)² = (-7) . (-7) = +49
c) (+2)⁴ = (+2) . (+2) . (+2) . (+2) = + 16
d) (-2)⁴ = (-2) . (-2) . (-2) . (-2) = + 16

Conclusão : Quando o expoente for par, a potencia é um número positivo

2) Quando o expoente for impar

a) (+4)³ = (+4) . (+4) . (+4) = + 64
b) (-4)³ = (-4) . (-4) . (-4) = - 64
c) (+2)⁵ = (+2) . (+2) . (+2) . (+2) . (+2) = +32
d) (-2)⁵ = (-2) . (-2) . (-2) . (-2) . (-2) = -32

Conclusão : Quando o expoente é impar, a potência tem o mesmo sinal da base.


EXERCÍCIOS

1) Calcule as potências ;

a) (+7)²= (R: +49)
b) (+4)² = (R: +16)
c) (+3)² = (R: +9)
d) (+5)³ = (R: +125)
e) (+2)³ = (R: +8)
f) (+3)³ = (R: +27)
g) (+2)⁴ = (R: +16)
h) (+2)⁵ = (R: +32)
i) (-5)² = (R: +25)
j) (-3)² = (R: +9)
k) (-2)³ = (R: -8)
l) (-5)³ = (R: -125)
m) (-1)³ = (R: -1)
n) (-2)⁴ = (R: +16)
o) (-3)³ = (R: -27)
p) (-3)⁴ = (R: +81)


2) Calcule as potencias:

a) (-6)² = (R: +36)
b) (+3)⁴ =  (R: +81) 
c) (-6)³ = (R: -216)
d) (-10)² = (R: +100)
e) (+10)² = (R: +100)
f) (-3)⁵ = (R: -243)
g) (-1)⁶ = (R: +1)

h) (-1)³ = (R: -1)
i) (+2)⁶ = (R: +64)
j) (-4)² = (R: +16)
k) (-9)² = (R: +81)
l) (-1)⁵⁴ = (R: +1)
m) (-1)¹³ = (R: -1)
n) (-4)³ = (R: -64)
o) (-8)² = (R: +64) 
p) (-7)² = (R: +49)

3) Calcule as potencias

a) 0⁷ = (R: 0)
b) (-2)⁸ = (R: 256)
c) (-3)⁵ = (R: -243)
d) (-11)³ = (R: -1331)
e) (-21)² = (R: 441)
f) (+11)³ = (R: +1331)
g) (-20)³ = (R: -8000)
h) (+50)² = (R: 2500)

4) Calcule o valor das expressões (primeiro as potências)

a) 15 + (+5)² = (R: 40)
b) 32 – (+7)² = (R: -17)
c) 18 + (-5)² = (R: 43)
d) (-8)² + 14 = (R: 78)
e) (-7)² - 60 = (R: -11)f) 40 – (-2)³ = (R: 48)
g) (-2)⁵ + 21 = (R: -11)
h) (-3)³ - 13 = (R: -40)
i) (-4)² + (-2)⁴ = (R: 32)
j) (-3)² + (-2)³ = (R: 1)
k) (-1)⁶ + (-3)³ = (R: -26)
l) (-2)³ + (-1)⁵ = (R: -9)


CONVENÇÕES:

Todo o número inteiro elevado a 1 é igual a ele mesmo.

Exemplos:

a) (+7)¹ = +7
b) (-3)¹ = -3

Todo o número inteiro elevado a zero é igual a 1.

Exemplos:
a) (+5)⁰ = 1
b) (-8)⁰= 1

IMPORTANTE!

Observe como a colocação dos parênteses é importante:

a) (-3)² = (-3) . (-3) = +9
b) -3² = -(3 . 3) = -9

Para que a base seja negativa, ela deve estar entre parênteses.



EXERCÍCIOS


1) Calcule as potências:

a) (+6)¹ = (R: +6)
b) (-2)¹ = (R: -2)c) (+10)¹ = (R: +10)
d) (-4)⁰ = (R: +1)e) (+7)⁰ = (R: +1)
f) (-10)⁰ = (R: +1)
g) (-1)⁰ = (R: +1)
h) (+1)⁰ = (R: +1)
i) (-1)⁴²³ = (R: -1)j) (-50)¹ = (R: -50)
k) (-100)⁰ = (R+1)
l) 20000⁰ = (R: +1)


2) Calcule:

a) (-2)⁶ = (R: 64
b) -2⁶ = (R: -64)

Os resultados são iguais ou diferentes?
R: Diferentes

3) Calcule as potências:

a) (-5)² = (R: 25)
b) -5² = (R: -25)
c) (-7)² = (R: +49)
d) -7² = (R: -49)
e) (-1)⁴ = (R: +1)
f) -1⁴ = (R: -1)


4) Calcule o valor das expressões (primeiro as potências):

a) 35 + 5²= (R: 60)

b) 50 - 4² = (R: -14) 
c) -18 + 10² = (R: 82) 
d) -6² + 20 = (R: -16)
e) -12-1⁷ = (R: -13)
f) -2⁵ - 40 = (R: -72)
g) 2⁵ + 0 - 2⁴ = (R: 16) 
h) 2⁴ - 2² - 2⁰ = (R: 11)
i) -3² + 1 - .65⁰ = (R: -9)
j) 4² - 5 + 0 + 7² = (R: 60)
k) 10 - 7² - 1 + 2³ = (R: -32)
l) 3⁴ - 3³ + 3² - 3¹ + 3⁰ = (R: 61)


PROPRIEDADES 

1) Produto de potência de mesma base: conserva-se a base e somam-se os expoentes.

Observe: a³ . a² = ( a .a .a ) . ( a .a ) = a⁵

Note que: a³ . a² = a³ ⁺ ² = a⁵

Exemplos

a) (-5)⁷ . (-5)² = (-5) ⁷ ⁺ ² = (-5)⁹
b) (+2)³ . (+2)⁴ = (+2)³ ⁺ ⁴ = (+2)⁷

EXERCÍCIOS

1) Reduza a uma só potência:

a) 5⁶ . 5² = 5⁹
b) x⁷. x⁸= x¹⁵

c) 2⁴ . 2 . 2⁹ = 2¹⁴
d) x⁵ .x³ . x = x⁹
e) m⁷ . m⁰ . m⁵ = m¹²
f) a . a² . a = a⁴


2) Reduza a uma só potencia:

a) (+5)⁷ . (+5)² = [R: (+5)⁹]
b) (+6)² . (+6)³ = [R: (+6)⁵]
c) (-3)⁵ . (-3)² = [R: (-3)⁷]
d) (-4)² . (-4) = [R: (-4)³]
e) (+7) . (+7)⁴ = [R: (+7)⁵]
f) (-8) . (-8) . (-8) = [R: (-8)³]
g) (-5)³ . (-5) . (-5)² = [R: (-5)⁶]
h) (+3) . (+3) . (+3)⁷ = [R: (+3)⁹]
i) (-6)² . (-6) . (-6)² = [R: (-6)⁵]
j) (+9)³ . (+9) . (+9)⁴ = [R: (+9)⁸] 


 Divisão de potências de mesma base:

Observe: a⁵ : a² = (a . a . a . a .a ) : (a .a ) = a³

Note que: a⁵ : a² = a⁵⁻² = a³

Exemplos:

a) (-5)⁸ : (-5)⁶ = (-5)⁸⁻⁶ = (-5)²
b) (+7)⁹ : (+7)⁶ = (+7)⁹⁻⁶ = (+7)³


EXERCÍCIOS

1) Reduza a um asó potência:
a) a⁷ : a³ = (R: a⁴)
b) c⁸ : c² = (R: c⁶)
c) m³ : m = (R: m² )
d) x⁵ : x⁰ = (R: x⁵) 
e) y²⁵ : y²⁵ = (R: y⁰= 1) 
f) a¹⁰² : a = (R: a¹⁰¹)

2) Reduza a uma só potência:

a) (-3)⁷ : (-3)² = [ R: (-3)⁵]
b) (+4)¹⁰ : (+4)³ = [R: ( +4)⁷]
c) (-5)⁶ : (-5)² = [R: (-5)⁴]
d) (+3)⁹ : (+3) = [R: (+3)⁸]
e) (-2)⁸ : (-2)⁵ = [R: (-2)³]
f) (-3)⁷ : (-3) = [R: (-3)⁶]
g) (-9)⁴ : (-9) = [R: (-9)³]
h) (-4)² : (-4)² = [R: (-4)⁰ = 1]

3) Calcule os quocientes:

a) (-5)⁶ : (-5)⁴ = (R: 25)
b) (-3)⁵ : (-3)² = (R: -27 )
c) (-4)⁸ : (-4)⁵= (R: -64)
d) (-1)⁹ : (-1)² = (R: -1)
e) (-7)⁸ : (-7)⁶= (R: 49)
f) (+10)⁶ : (+10)³ = (R: 1000)

3) Potência de Potência:

Observe: (a²)³ = a²˙³ = a⁶
Exemplo: [(-2)³]⁴ = (-2)³˙⁴ = (-2)¹²

EXERCÍCIOS

1) Aplique a propriedade de potência de potência.

a) [(-4)² ]³ = (-4)⁶
b) [(+5)³ ]⁴ = (+5)¹²
c) [(-3)³ ]² = (-3)⁶
d) [(-7)³ ]³ = (-7)⁹

e) [(+2)⁴ ]⁵ = (+2)²⁰ 
f) [(-7)⁵ ]³ = (-7)¹⁵
g) [(-1)² ]² = (-1)⁴
h) [(+2)³ ]³ = (+2)⁹
i) [(-5)⁰ ]³ = (-5)⁰ = 1

2) Calcule o valor de:

a) [(+3)³]² = 729
b) [(+5)¹]⁵ = -243
c) [(-1)⁶]² = 
d) [(-1)³]⁷ = -1

e) [(-2)²]³ = 64
f) [(+10)²]² = 10000

4) Potência de um produto. 

Observe: ( a . b )³ = ( a . b ) . (a . b ) . ( a . b ) = ( a . a . a ) . ( b . b . b ) = a³ . b³

Exemplos: [(-2) . (+5) ] = (-2)³ . (+5)³

EXERCÍCIOS

1) Aplique a propriedade de potência de um produto:

a) [(-2) . (+3)]⁵ = R:(-2)⁵ . (+3)⁵

b) [(+5) . (-7)]³ = R:(+5)³. (-7)³ 
c) [(-7) . (+4)]² = R:(-7)² . (+4)²
d) [(+3) . (+5)]² = R:(+3)² . (+5)²
e) [(-4)² . (+6)]³ = R:(-4)⁶ . (+6)³
f) [(+5)⁴ . (-2)³]² = R:(-4)⁸ . (+6)⁶

Destaque!!!!!!!!!!!

Aula criativa de matemática sobre a conversão do dólar

Um emprego em um navio de cruzeiro pode ser uma grande chance de conhecer lugares novos e ganhar um bom salário. Quanto melhor for seu ingl...